The optimizer is the execution unit for performing self-optimizing tasks on a table. To isolate optimizing tasks on different tables and support the deployment of optimizers in different environments, Amoro has proposed the concepts of optimizer containers and optimizer groups:
flink container based on Flink streaming job, spark container based on Spark job, local container based on Java Application, and external container based on manually started by users.Before start exploring self-optimizing, you need to configure the container information in the configuration file. Optimizer container represents a specific set of runtime environment configuration. The supported container types include: local, kubernetes, flink, spark, and external.
Local container is a way to start Optimizer by local process and supports multi-threaded execution of Optimizer tasks. It is recommended to be used only in demo or local deployment scenarios. If the environment variable for jdk is not configured, the user can configure java_home to point to the jdk root directory. If already configured, this configuration item can be ignored.
Local container support the following properties:
| Property Name | Required | Default Value | Description |
|---|---|---|---|
| ams-optimizing-uri | false | N/A | URI of AMS thrift self-optimizing endpoint. This could be used if the ams.server-expose-host is not available |
| export.JAVA_HOME | false | N/A | Java runtime location |
containers: - name: localContainer container-impl: org.apache.amoro.server.manager.LocalOptimizerContainer properties: export.JAVA_HOME: "/opt/java" # JDK environment
The format for optimizing URI is thrift://{host}:{port}?parameter1=value2¶meter2=value2. The supported parameters include:
| Parameter Name | Default Value | Description |
|---|---|---|
| autoReconnect | true | If reconnect the server when the connection is broken |
| maxReconnects | 5 | Retry times when reconnecting |
| connectTimeout | 0 (Forever) | Timeout in milliseconds when connecting the server |
| socketTimeout | 0 (Forever) | Timeout in milliseconds when communicating with the server |
| maxMessageSize | 104856600 (100MB) | Max message size when communicating with the server |
| maxMessageSize | 104856600 (100MB) | Max message size when communicating with the server |
| minIdle | 0 | Minimal idle clients in the pool |
| maxIdle | 5 | Maximal idle clients in the pool |
Kubernetes container is a way to start Optimizer On K8s with standalone Optimizer. To use Kubernetes container, you need to add a new container configuration. with container-impl as org.apache.amoro.server.manager.KubernetesOptimizerContainer
Kubernetes container support the following properties:
| Property Name | Required | Default Value | Description |
|---|---|---|---|
| kube-config-path | true | N/A | Kubernetes config location |
| image | true | N/A | Optimizer Image name |
| pullPolicy | false | IfNotPresent | Specify the imagePullPolicy in the container spec |
| namespace | false | “default” | The namespace of optimizer to deploy |
| ams-optimizing-uri | false | N/A | URI of AMS thrift self-optimizing endpoint. This could be used if the ams.server-expose-host is not available |
| cpu.factor | false | “1.0” | CPU factor when request kubernetes resource. Default 1 Cpu pre thread |
| memory | true | N/A | Memory usage for pre thread |
| extra.jvm.heap.ratio | false | 0.8 | The ratio of JVM heap memory to total pod memory |
containers: - name: KubernetesContainer container-impl: org.apache.amoro.server.manager.KubernetesOptimizerContainer properties: kube-config-path: ~/.kube/config image: apache/amoro:{version} pullPolicy: IfNotPresent
Flink container is a way to start Optimizer through Flink jobs. With Flink, you can easily deploy Optimizer on yarn clusters or kubernetes clusters to support large-scale data scenarios. To use flink container, you need to add a new container configuration. with container-impl as org.apache.amoro.server.manager.FlinkOptimizerContainer
Flink container support the following properties:
| Property Name | Required | Default Value | Description |
|---|---|---|---|
| flink-home | true | N/A | Flink installation location |
| target | true | yarn-per-job | flink job deployed target, available values yarn-per-job, yarn-application, kubernetes-application, session |
| job-uri | false | N/A | The jar uri of flink optimizer job. This is required if target is application mode. |
| ams-optimizing-uri | false | N/A | uri of AMS thrift self-optimizing endpoint. This could be used if the ams.server-expose-host is not available |
| export.<key> | false | N/A | environment variables will be exported during job submit |
| export.JAVA_HOME | false | N/A | Java runtime location |
| export.HADOOP_CONF_DIR | false | N/A | Direction which holds the configuration files for the hadoop cluster (including hdfs-site.xml, core-site.xml, yarn-site.xml ). If the hadoop cluster has kerberos authentication enabled, you need to prepare an additional krb5.conf and a keytab file for the user to submit tasks |
| export.JVM_ARGS | false | N/A | you can configure flink to run additional configuration parameters, here is an example of configuring krb5.conf, specify the address of krb5.conf to be used by Flink when committing via -Djava.security.krb5.conf=/opt/krb5.conf |
| export.HADOOP_USER_NAME | false | N/A | the username used to submit tasks to yarn, used for simple authentication |
| export.FLINK_CONF_DIR | false | N/A | the directory where flink_conf.yaml is located |
| flink-conf.<key> | false | N/A | Flink Configuration Options will be passed to cli by -Dkey=value, |
{{< hint info >}} To better utilize the resources of Flink Optimizer, it is recommended to add the following configuration to the Flink Optimizer Group:
flink-conf.taskmanager.memory.managed.size to 32mb as Flink optimizer does not have any computation logic, it does not need to occupy managed memory.flink-conf.taskmanager.memory.network.max to 32mb as there is no need for communication between operators in Flink Optimizer.flink-conf.taskmanager.memory.network.min to 32mb as there is no need for communication between operators in Flink Optimizer. {{< /hint >}}An example for yarn-per-job mode:
containers: - name: flinkContainer container-impl: org.apache.amoro.server.manager.FlinkOptimizerContainer properties: flink-home: /opt/flink/ #flink install home export.HADOOP_CONF_DIR: /etc/hadoop/conf/ #hadoop config dir export.HADOOP_USER_NAME: hadoop #hadoop user submit on yarn export.JVM_ARGS: -Djava.security.krb5.conf=/opt/krb5.conf #flink launch jvm args, like kerberos config when ues kerberos export.FLINK_CONF_DIR: /etc/hadoop/conf/ #flink config dir
An example for kubernetes-application mode:
containers: - name: flinkContainer container-impl: org.apache.amoro.server.manager.FlinkOptimizerContainer properties: flink-home: /opt/flink/ # Flink install home target: kubernetes-application # Flink run as native kubernetes pullPolicy: IfNotPresent # Specify the imagePullPolicy in the container spec job-uri: "local:///opt/flink/usrlib/optimizer-job.jar" # Optimizer job main jar for kubernetes application ams-optimizing-uri: thrift://ams.amoro.service.local:1261 # AMS optimizing uri export.FLINK_CONF_DIR: /opt/flink/conf/ # Flink config dir flink-conf.kubernetes.container.image: "apache/amoro-flink-optimizer:{version}" # Optimizer image ref flink-conf.kubernetes.service-account: flink # Service account that is used within kubernetes cluster.
An example for flink session mode:
containers: - name: flinkContainer container-impl: org.apache.amoro.server.manager.FlinkOptimizerContainer properties: target: session # Flink run in session cluster job-uri: "local:///opt/flink/usrlib/optimizer-job.jar" # Optimizer job main jar ams-optimizing-uri: thrift://ams.amoro.service.local:1261 # AMS optimizing uri export.FLINK_CONF_DIR: /opt/flink/conf/ # Flink config dir, flink-conf.yaml should e in this dir, contains the rest connection parameters of the session cluster flink-conf.high-availability: zookeeper # Flink high availability mode, reference: https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/deployment/config/#high-availability flink-conf.high-availability.zookeeper.quorum: xxx:2181 flink-conf.high-availability.zookeeper.path.root: /flink flink-conf.high-availability.cluster-id: amoro-optimizer-cluster flink-conf.high-availability.storageDir: hdfs://xxx/xxx/xxx flink-conf.rest.address: localhost:8081 # If the session cluster is not high availability mode, please configure the restaddress of jobmanager
Spark container is another way to start Optimizer through Spark jobs. With Spark, you can easily deploy Optimizer on yarn clusters or kubernetes clusters to support large-scale data scenarios. To use spark container, you need to add a new container configuration. with container-impl as org.apache.amoro.server.manager.SparkOptimizerContainer
Spark container support the following properties:
| Property Name | Required | Default Value | Description |
|---|---|---|---|
| spark-home | true | N/A | Spark installation location |
| master | true | yarn | The cluster manager to connect to, available values yarn, k8s://HOST:PORT |
| deploy-mode | true | client | Spark job deploy mode, available values client, cluster |
| job-uri | false | N/A | The jar uri of spark optimizer job. This is required if deploy mode is cluster mode. |
| ams-optimizing-uri | false | N/A | uri of AMS thrift self-optimizing endpoint. This could be used if the ams.server-expose-host is not available |
| export.<key> | false | N/A | Environment variables will be exported during job submit |
| export.JAVA_HOME | false | N/A | Java runtime location |
| export.HADOOP_CONF_DIR | false | N/A | Direction which holds the configuration files for the hadoop cluster (including hdfs-site.xml, core-site.xml, yarn-site.xml ). If the hadoop cluster has kerberos authentication enabled, you need to prepare an additional krb5.conf and a keytab file for the user to submit tasks |
| export.JVM_ARGS | false | N/A | You can configure spark to run additional configuration parameters, here is an example of configuring krb5.conf, specify the address of krb5.conf to be used by Spark when committing via -Djava.security.krb5.conf=/opt/krb5.conf |
| export.HADOOP_USER_NAME | false | N/A | The username used to submit tasks to yarn, used for simple authentication |
| export.SPARK_CONF_DIR | false | N/A | The directory where spark_conf.yaml is located |
| spark-conf.<key> | false | N/A | Spark Configuration Options will be passed to cli by -conf key=value, |
{{< hint info >}} To better utilize the resources of Spark Optimizer, the DRA(Dynamic Resource Allocation) feature is switched on, and the optimizer parallelism equals `spark.dynamicAllocation.maxExecutors. If you don't want this feature, you can use these settings:
spark-conf.spark.dynamicAllocation.enabled to false as you need allocate proper driver/executor resources Using Spark Configuration Options.spark-conf.spark.dynamicAllocation.maxExecutors to 10 as optimizer parallelism can only affect parallelism polling optimizing tasks from AMS. {{< /hint >}}{{< hint info >}} The spark optimizer may fail due to class conflicts sometimes, you can try to fix by following the steps below:
spark-conf.spark.driver.userClassPathFirst to true.spark-conf.spark.executor.userClassPathFirst to true. {{< /hint >}}An example for yarn client mode:
containers: - name: sparkContainer container-impl: org.apache.amoro.server.manager.SparkOptimizerContainer properties: spark-home: /opt/spark/ # Spark install home master: yarn # The k8s cluster manager to connect to deploy-mode: client # Spark run as client mode export.HADOOP_CONF_DIR: /etc/hadoop/conf/ # Hadoop config dir export.HADOOP_USER_NAME: hadoop # Hadoop user submits on yarn export.JVM_ARGS: -Djava.security.krb5.conf=/opt/krb5.conf # Spark launch jvm args, like kerberos config when ues kerberos export.SPARK_CONF_DIR: /etc/hadoop/conf/ # Spark config dir
An example for kubernetes cluster mode:
containers: - name: sparkContainer container-impl: org.apache.amoro.server.manager.SparkOptimizerContainer properties: spark-home: /opt/spark/ # Spark install home master: k8s://https://<k8s-apiserver-host>:<k8s-apiserver-port> # The k8s cluster manager to connect to deploy-mode: cluster # Spark deploy mode, client or cluster pullPolicy: IfNotPresent # Specify the imagePullPolicy in the container spec job-uri: "local:///opt/spark/usrlib/optimizer-job.jar" # Optimizer job main jar for kubernetes application ams-optimizing-uri: thrift://ams.amoro.service.local:1261 # AMS optimizing uri export.HADOOP_USER_NAME: hadoop # Hadoop user submits on yarn export.HADOOP_CONF_DIR: /etc/hadoop/conf/ # Hadoop config dir export.SPARK_CONF_DIR: /opt/spark/conf/ # Spark config dir spark-conf.spark.kubernetes.container.image: "apache/amoro-spark-optimizer:{version}" # Optimizer image ref spark-conf.spark.dynamicAllocation.enabled: "true" # Enabling DRA feature can make full use of computing resources spark-conf.spark.shuffle.service.enabled: "false" # If spark DRA is used on kubernetes, we should set it false spark-conf.spark.dynamicAllocation.shuffleTracking.enabled: "true" # Enables shuffle file tracking for executors, which allows dynamic allocation without the need for an ESS spark-conf.spark.kubernetes.namespace: <spark-namespace> # Namespace that is used within kubernetes cluster spark-conf.spark.kubernetes.authenticate.driver.serviceAccountName: <spark-sa> # Service account that is used within kubernetes cluster
External container refers to the way in which the user manually starts the optimizer. The system has a built-in external container called external, so you don't need to configure it manually.
Optimizer group (optimizer resource group) is a concept introduced to divide Optimizer resources. An Optimizer Group can contain several optimizers with the same container implementation to facilitate the expansion and contraction of the resource group.
You can add an optimizer group on the Amoro dashboard by following these steps:
1.Click the “Add Group” button in the top left corner of the Optimizer Groups page.
2.Configure the newly added Optimizer group.
The following configuration needs to be filled in:
flink on yarn, and users can set parameters using the flink-conf.<property>=<value> or use flink-conf.yaml to configure parameters. Supports native parameters for spark on yarn, and users can set parameters using the spark-conf.<property>=<value> or use spark-defaults.conf to configure parameters.The optimizer group supports the following properties:
| Property | Container type | Required | Default | Description |
|---|---|---|---|---|
| scheduling-policy | All | No | quota | The scheduler group scheduling policy, the default value is quota, it will be scheduled according to the quota resources configured for each table, the larger the table quota is, the more optimizer resources it can take. There is also a configuration balanced that will balance the scheduling of each table, the longer the table has not been optimized, the higher the scheduling priority will be. |
| max-input-file-size-per-thread | All | No | 536870912(512MB) | Max input file size per optimize thread. |
| ams-optimizing-uri | All | No | thrift://{ams.server-expose-host}:{ams.thrift-server.optimizing-service.binding-port} | Table optimizing service endpoint. This is used when the default service endpoint is not visitable. |
| cache-enabled | All | No | false | Whether enable cache in optimizer. |
| cache-max-total-size | All | No | 128mb | Max total size in optimier cache. |
| cache-max-entry-size | All | No | 64mb | Max entry size in optimizer cache. |
| cache-timeout | All | No | 10min | Timeout in optimizer cache. |
| memory | Local | Yes | N/A | The max memory of JVM for local optimizer, in MBs. |
| flink-conf.<key> | Flink | No | N/A | Any flink config options could be overwritten, priority is optimizing-group > optimizing-container > flink-conf.yaml. |
| spark-conf.<key> | Spark | No | N/A | Any spark config options could be overwritten, priority is optimizing-group > optimizing-container > spark-defaults.conf. |
{{< hint info >}} To better utilize the resources of Flink Optimizer, it is recommended to add the following configuration to the Flink Optimizer Group:
flink-conf.taskmanager.memory.managed.size to 32mb as Flink optimizer does not have any computation logic, it does not need to occupy managed memory.flink-conf.taskmanager.memory.network.max to 32mb as there is no need for communication between operators in Flink Optimizer.flink-conf.taskmanager.memory.network.min to 32mb as there is no need for communication between operators in Flink Optimizer. {{< /hint >}}You can click the edit button on the Optimizer Groups page to modify the configuration of the Optimizer group.
You can click the remove button on the Optimizer Groups page to delete the optimizer group, but only if the group is not referenced by any catalog or table and no optimizer belonging to this group is running.
You can click the Create Optimizer button on the Optimizers page to create the optimizer for the corresponding optimizer group, and then click OK to start the optimizer for this optimizer group according to the parallelism configuration. If the optimizer runs normally, you will see an optimizer with the status RUNNING on the Optimizers page.
You can click the Release button on the Optimizer page to release the optimizer.
{{< hint info >}} Currently, only optimizer scaled through the dashboard can be released on dashboard. {{< /hint >}}
You can submit optimizer in your own Flink task development platform or local Flink environment with the following configuration. The main parameters include:
./bin/flink run-application -t yarn-application \ -Djobmanager.memory.process.size=1024mb \ -Dtaskmanager.memory.process.size=2048mb \ -Dtaskmanager.memory.managed.size=32mb \ -Dtaskmanager.memory.network.max=32mb \ -Dtaskmanager.memory.network.min=32mb \ -c org.apache.amoro.optimizer.flink.FlinkOptimizer \ ${AMORO_HOME}/plugin/optimizer/flink/optimizer-job.jar \ -a thrift://127.0.0.1:1261 \ -g flinkGroup \ -p 1
The description of the relevant parameters is shown in the following table:
| Property | Required | Description |
|---|---|---|
| -a | Yes | The address of the AMS thrift service, for example: thrift://127.0.0.1:1261, can be obtained from the config.yaml configuration. |
| -g | Yes | Group name created in advance under external container. |
| -p | Yes | Optimizer parallelism usage. |
| -hb | No | Heart beat interval with ams, should be smaller than configuration ams.optimizer.heart-beat-timeout in AMS configuration conf/config.yaml which is 60000 milliseconds by default, default 10000(ms). |
| -eds | No | Whether extend storage to disk, default false. |
| -dsp | No | Defines the directory where the storage files are saved, the default temporary-file directory is specified by the system property java.io.tmpdir. On UNIX systems the default value of this property is typically “/tmp” or “/var/tmp”. |
| -msz | No | Memory storage size limit when extending disk storage(MB), default 512(MB). |
| -ce | No | Whether enable cache in optimizer, default false. |
| -cmts | No | Max total size in optimier cache, default 128MB. |
| -cmes | No | Max entry size in optimizer cache, default 64MB. |
| -ct | No | Timeout in optimizer cache, default 10Min. |
Or you can submit optimizer in your own Spark task development platform or local Spark environment with the following configuration. The main parameters include:
./bin/spark-submit --master yarn --deploy-mode cluster \ --conf "spark.driver.cores=1" \ --conf "spark.driver.memory=g" \ --conf "spark.executor.cores=1" \ --conf "spark.executor.memory=2g" \ --class org.apache.amoro.optimizer.spark.SparkOptimizer \ ${AMORO_HOME}/plugin/optimizer/spark/optimizer-job.jar \ -a thrift://127.0.0.1:1261 \ -g sparkGroup \ -p 1
The description of the relevant parameters is shown in the following table:
| Property | Required | Description |
|---|---|---|
| -a | Yes | The address of the AMS thrift service, for example: thrift://127.0.0.1:1261, can be obtained from the config.yaml configuration. |
| -g | Yes | Group name created in advance under external container. |
| -p | Yes | Optimizer parallelism usage. |
| -hb | No | Heart beat interval with ams, should be smaller than configuration ams.optimizer.heart-beat-timeout in AMS configuration conf/config.yaml which is 60000 milliseconds by default, default 10000(ms). |
| -eds | No | Whether extend storage to disk, default false. |
| -dsp | No | Defines the directory where the storage files are saved, the default temporary-file directory is specified by the system property java.io.tmpdir. On UNIX systems the default value of this property is typically “/tmp” or “/var/tmp”. |
| -msz | No | Memory storage size limit when extending disk storage(MB), default 512(MB). |
| -ce | No | Whether enable cache in optimizer, default false. |
| -cmts | No | Max total size in optimier cache, default 128MB. |
| -cmes | No | Max entry size in optimizer cache, default 64MB. |
| -ct | No | Timeout in optimizer cache, default 10Min. |