blob: 940b81ef3ffa43321471a321708dbc64c56b7874 [file] [log] [blame] [view]
# airflow_client.client.ExperimentalApi
All URIs are relative to *http://localhost*
Method | HTTP request | Description
------------- | ------------- | -------------
[**wait_dag_run_until_finished**](ExperimentalApi.md#wait_dag_run_until_finished) | **GET** /api/v2/dags/{dag_id}/dagRuns/{dag_run_id}/wait | Experimental: Wait for a dag run to complete, and return task results if requested.
# **wait_dag_run_until_finished**
> object wait_dag_run_until_finished(dag_id, dag_run_id, interval, result=result)
Experimental: Wait for a dag run to complete, and return task results if requested.
🚧 This is an experimental endpoint and may change or be removed without notice.Successful response are streamed as newline-delimited JSON (NDJSON). Each line is a JSON object representing the DAG run state.
### Example
* OAuth Authentication (OAuth2PasswordBearer):
* Bearer Authentication (HTTPBearer):
```python
import airflow_client.client
from airflow_client.client.rest import ApiException
from pprint import pprint
# Defining the host is optional and defaults to http://localhost
# See configuration.py for a list of all supported configuration parameters.
configuration = airflow_client.client.Configuration(
host = "http://localhost"
)
# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.
configuration.access_token = os.environ["ACCESS_TOKEN"]
# Configure Bearer authorization: HTTPBearer
configuration = airflow_client.client.Configuration(
access_token = os.environ["BEARER_TOKEN"]
)
# Enter a context with an instance of the API client
with airflow_client.client.ApiClient(configuration) as api_client:
# Create an instance of the API class
api_instance = airflow_client.client.ExperimentalApi(api_client)
dag_id = 'dag_id_example' # str |
dag_run_id = 'dag_run_id_example' # str |
interval = 3.4 # float | Seconds to wait between dag run state checks
result = ['result_example'] # List[str] | Collect result XCom from task. Can be set multiple times. (optional)
try:
# Experimental: Wait for a dag run to complete, and return task results if requested.
api_response = api_instance.wait_dag_run_until_finished(dag_id, dag_run_id, interval, result=result)
print("The response of ExperimentalApi->wait_dag_run_until_finished:\n")
pprint(api_response)
except Exception as e:
print("Exception when calling ExperimentalApi->wait_dag_run_until_finished: %s\n" % e)
```
### Parameters
Name | Type | Description | Notes
------------- | ------------- | ------------- | -------------
**dag_id** | **str**| |
**dag_run_id** | **str**| |
**interval** | **float**| Seconds to wait between dag run state checks |
**result** | [**List[str]**](str.md)| Collect result XCom from task. Can be set multiple times. | [optional]
### Return type
**object**
### Authorization
[OAuth2PasswordBearer](../README.md#OAuth2PasswordBearer), [HTTPBearer](../README.md#HTTPBearer)
### HTTP request headers
- **Content-Type**: Not defined
- **Accept**: application/json, application/x-ndjson
### HTTP response details
| Status code | Description | Response headers |
|-------------|-------------|------------------|
**200** | Successful Response | - |
**401** | Unauthorized | - |
**403** | Forbidden | - |
**404** | Not Found | - |
**422** | Validation Error | - |
[[Back to top]](#) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to Model list]](../README.md#documentation-for-models) [[Back to README]](../README.md)