blob: 38a75b82bd019966a1ee2860b20f25f45f81cc7f [file] [log] [blame]
/**
* Copyright (c) 2006-2015, JGraph Ltd
* Copyright (c) 2006-2015, Gaudenz Alder
*/
var mxEdgeStyle =
{
/**
* Class: mxEdgeStyle
*
* Provides various edge styles to be used as the values for
* <mxConstants.STYLE_EDGE> in a cell style.
*
* Example:
*
* (code)
* var style = stylesheet.getDefaultEdgeStyle();
* style[mxConstants.STYLE_EDGE] = mxEdgeStyle.ElbowConnector;
* (end)
*
* Sets the default edge style to <ElbowConnector>.
*
* Custom edge style:
*
* To write a custom edge style, a function must be added to the mxEdgeStyle
* object as follows:
*
* (code)
* mxEdgeStyle.MyStyle = function(state, source, target, points, result)
* {
* if (source != null && target != null)
* {
* var pt = new mxPoint(target.getCenterX(), source.getCenterY());
*
* if (mxUtils.contains(source, pt.x, pt.y))
* {
* pt.y = source.y + source.height;
* }
*
* result.push(pt);
* }
* };
* (end)
*
* In the above example, a right angle is created using a point on the
* horizontal center of the target vertex and the vertical center of the source
* vertex. The code checks if that point intersects the source vertex and makes
* the edge straight if it does. The point is then added into the result array,
* which acts as the return value of the function.
*
* The new edge style should then be registered in the <mxStyleRegistry> as follows:
* (code)
* mxStyleRegistry.putValue('myEdgeStyle', mxEdgeStyle.MyStyle);
* (end)
*
* The custom edge style above can now be used in a specific edge as follows:
*
* (code)
* model.setStyle(edge, 'edgeStyle=myEdgeStyle');
* (end)
*
* Note that the key of the <mxStyleRegistry> entry for the function should
* be used in string values, unless <mxGraphView.allowEval> is true, in
* which case you can also use mxEdgeStyle.MyStyle for the value in the
* cell style above.
*
* Or it can be used for all edges in the graph as follows:
*
* (code)
* var style = graph.getStylesheet().getDefaultEdgeStyle();
* style[mxConstants.STYLE_EDGE] = mxEdgeStyle.MyStyle;
* (end)
*
* Note that the object can be used directly when programmatically setting
* the value, but the key in the <mxStyleRegistry> should be used when
* setting the value via a key, value pair in a cell style.
*
* Function: EntityRelation
*
* Implements an entity relation style for edges (as used in database
* schema diagrams). At the time the function is called, the result
* array contains a placeholder (null) for the first absolute point,
* that is, the point where the edge and source terminal are connected.
* The implementation of the style then adds all intermediate waypoints
* except for the last point, that is, the connection point between the
* edge and the target terminal. The first ant the last point in the
* result array are then replaced with mxPoints that take into account
* the terminal's perimeter and next point on the edge.
*
* Parameters:
*
* state - <mxCellState> that represents the edge to be updated.
* source - <mxCellState> that represents the source terminal.
* target - <mxCellState> that represents the target terminal.
* points - List of relative control points.
* result - Array of <mxPoints> that represent the actual points of the
* edge.
*/
EntityRelation: function (state, source, target, points, result)
{
var view = state.view;
var graph = view.graph;
var segment = mxUtils.getValue(state.style,
mxConstants.STYLE_SEGMENT,
mxConstants.ENTITY_SEGMENT) * view.scale;
var pts = state.absolutePoints;
var p0 = pts[0];
var pe = pts[pts.length-1];
var isSourceLeft = false;
if (p0 != null)
{
source = new mxCellState();
source.x = p0.x;
source.y = p0.y;
}
else if (source != null)
{
var constraint = mxUtils.getPortConstraints(source, state, true, mxConstants.DIRECTION_MASK_NONE);
if (constraint != mxConstants.DIRECTION_MASK_NONE && constraint != mxConstants.DIRECTION_MASK_WEST +
mxConstants.DIRECTION_MASK_EAST)
{
isSourceLeft = constraint == mxConstants.DIRECTION_MASK_WEST;
}
else
{
var sourceGeometry = graph.getCellGeometry(source.cell);
if (sourceGeometry.relative)
{
isSourceLeft = sourceGeometry.x <= 0.5;
}
else if (target != null)
{
isSourceLeft = target.x + target.width < source.x;
}
}
}
else
{
return;
}
var isTargetLeft = true;
if (pe != null)
{
target = new mxCellState();
target.x = pe.x;
target.y = pe.y;
}
else if (target != null)
{
var constraint = mxUtils.getPortConstraints(target, state, false, mxConstants.DIRECTION_MASK_NONE);
if (constraint != mxConstants.DIRECTION_MASK_NONE && constraint != mxConstants.DIRECTION_MASK_WEST +
mxConstants.DIRECTION_MASK_EAST)
{
isTargetLeft = constraint == mxConstants.DIRECTION_MASK_WEST;
}
else
{
var targetGeometry = graph.getCellGeometry(target.cell);
if (targetGeometry.relative)
{
isTargetLeft = targetGeometry.x <= 0.5;
}
else if (source != null)
{
isTargetLeft = source.x + source.width < target.x;
}
}
}
if (source != null && target != null)
{
var x0 = (isSourceLeft) ? source.x : source.x + source.width;
var y0 = view.getRoutingCenterY(source);
var xe = (isTargetLeft) ? target.x : target.x + target.width;
var ye = view.getRoutingCenterY(target);
var seg = segment;
var dx = (isSourceLeft) ? -seg : seg;
var dep = new mxPoint(x0 + dx, y0);
dx = (isTargetLeft) ? -seg : seg;
var arr = new mxPoint(xe + dx, ye);
// Adds intermediate points if both go out on same side
if (isSourceLeft == isTargetLeft)
{
var x = (isSourceLeft) ?
Math.min(x0, xe)-segment :
Math.max(x0, xe)+segment;
result.push(new mxPoint(x, y0));
result.push(new mxPoint(x, ye));
}
else if ((dep.x < arr.x) == isSourceLeft)
{
var midY = y0 + (ye - y0) / 2;
result.push(dep);
result.push(new mxPoint(dep.x, midY));
result.push(new mxPoint(arr.x, midY));
result.push(arr);
}
else
{
result.push(dep);
result.push(arr);
}
}
},
/**
* Function: Loop
*
* Implements a self-reference, aka. loop.
*/
Loop: function (state, source, target, points, result)
{
var pts = state.absolutePoints;
var p0 = pts[0];
var pe = pts[pts.length-1];
if (p0 != null && pe != null)
{
if (points != null && points.length > 0)
{
for (var i = 0; i < points.length; i++)
{
var pt = points[i];
pt = state.view.transformControlPoint(state, pt);
result.push(new mxPoint(pt.x, pt.y));
}
}
return;
}
if (source != null)
{
var view = state.view;
var graph = view.graph;
var pt = (points != null && points.length > 0) ? points[0] : null;
if (pt != null)
{
pt = view.transformControlPoint(state, pt);
if (mxUtils.contains(source, pt.x, pt.y))
{
pt = null;
}
}
var x = 0;
var dx = 0;
var y = 0;
var dy = 0;
var seg = mxUtils.getValue(state.style, mxConstants.STYLE_SEGMENT,
graph.gridSize) * view.scale;
var dir = mxUtils.getValue(state.style, mxConstants.STYLE_DIRECTION,
mxConstants.DIRECTION_WEST);
if (dir == mxConstants.DIRECTION_NORTH ||
dir == mxConstants.DIRECTION_SOUTH)
{
x = view.getRoutingCenterX(source);
dx = seg;
}
else
{
y = view.getRoutingCenterY(source);
dy = seg;
}
if (pt == null ||
pt.x < source.x ||
pt.x > source.x + source.width)
{
if (pt != null)
{
x = pt.x;
dy = Math.max(Math.abs(y - pt.y), dy);
}
else
{
if (dir == mxConstants.DIRECTION_NORTH)
{
y = source.y - 2 * dx;
}
else if (dir == mxConstants.DIRECTION_SOUTH)
{
y = source.y + source.height + 2 * dx;
}
else if (dir == mxConstants.DIRECTION_EAST)
{
x = source.x - 2 * dy;
}
else
{
x = source.x + source.width + 2 * dy;
}
}
}
else if (pt != null)
{
x = view.getRoutingCenterX(source);
dx = Math.max(Math.abs(x - pt.x), dy);
y = pt.y;
dy = 0;
}
result.push(new mxPoint(x - dx, y - dy));
result.push(new mxPoint(x + dx, y + dy));
}
},
/**
* Function: ElbowConnector
*
* Uses either <SideToSide> or <TopToBottom> depending on the horizontal
* flag in the cell style. <SideToSide> is used if horizontal is true or
* unspecified. See <EntityRelation> for a description of the
* parameters.
*/
ElbowConnector: function (state, source, target, points, result)
{
var pt = (points != null && points.length > 0) ? points[0] : null;
var vertical = false;
var horizontal = false;
if (source != null && target != null)
{
if (pt != null)
{
var left = Math.min(source.x, target.x);
var right = Math.max(source.x + source.width,
target.x + target.width);
var top = Math.min(source.y, target.y);
var bottom = Math.max(source.y + source.height,
target.y + target.height);
pt = state.view.transformControlPoint(state, pt);
vertical = pt.y < top || pt.y > bottom;
horizontal = pt.x < left || pt.x > right;
}
else
{
var left = Math.max(source.x, target.x);
var right = Math.min(source.x + source.width,
target.x + target.width);
vertical = left == right;
if (!vertical)
{
var top = Math.max(source.y, target.y);
var bottom = Math.min(source.y + source.height,
target.y + target.height);
horizontal = top == bottom;
}
}
}
if (!horizontal && (vertical ||
state.style[mxConstants.STYLE_ELBOW] == mxConstants.ELBOW_VERTICAL))
{
mxEdgeStyle.TopToBottom(state, source, target, points, result);
}
else
{
mxEdgeStyle.SideToSide(state, source, target, points, result);
}
},
/**
* Function: SideToSide
*
* Implements a vertical elbow edge. See <EntityRelation> for a description
* of the parameters.
*/
SideToSide: function (state, source, target, points, result)
{
var view = state.view;
var pt = (points != null && points.length > 0) ? points[0] : null;
var pts = state.absolutePoints;
var p0 = pts[0];
var pe = pts[pts.length-1];
if (pt != null)
{
pt = view.transformControlPoint(state, pt);
}
if (p0 != null)
{
source = new mxCellState();
source.x = p0.x;
source.y = p0.y;
}
if (pe != null)
{
target = new mxCellState();
target.x = pe.x;
target.y = pe.y;
}
if (source != null && target != null)
{
var l = Math.max(source.x, target.x);
var r = Math.min(source.x + source.width,
target.x + target.width);
var x = (pt != null) ? pt.x : Math.round(r + (l - r) / 2);
var y1 = view.getRoutingCenterY(source);
var y2 = view.getRoutingCenterY(target);
if (pt != null)
{
if (pt.y >= source.y && pt.y <= source.y + source.height)
{
y1 = pt.y;
}
if (pt.y >= target.y && pt.y <= target.y + target.height)
{
y2 = pt.y;
}
}
if (!mxUtils.contains(target, x, y1) &&
!mxUtils.contains(source, x, y1))
{
result.push(new mxPoint(x, y1));
}
if (!mxUtils.contains(target, x, y2) &&
!mxUtils.contains(source, x, y2))
{
result.push(new mxPoint(x, y2));
}
if (result.length == 1)
{
if (pt != null)
{
if (!mxUtils.contains(target, x, pt.y) &&
!mxUtils.contains(source, x, pt.y))
{
result.push(new mxPoint(x, pt.y));
}
}
else
{
var t = Math.max(source.y, target.y);
var b = Math.min(source.y + source.height,
target.y + target.height);
result.push(new mxPoint(x, t + (b - t) / 2));
}
}
}
},
/**
* Function: TopToBottom
*
* Implements a horizontal elbow edge. See <EntityRelation> for a
* description of the parameters.
*/
TopToBottom: function(state, source, target, points, result)
{
var view = state.view;
var pt = (points != null && points.length > 0) ? points[0] : null;
var pts = state.absolutePoints;
var p0 = pts[0];
var pe = pts[pts.length-1];
if (pt != null)
{
pt = view.transformControlPoint(state, pt);
}
if (p0 != null)
{
source = new mxCellState();
source.x = p0.x;
source.y = p0.y;
}
if (pe != null)
{
target = new mxCellState();
target.x = pe.x;
target.y = pe.y;
}
if (source != null && target != null)
{
var t = Math.max(source.y, target.y);
var b = Math.min(source.y + source.height,
target.y + target.height);
var x = view.getRoutingCenterX(source);
if (pt != null &&
pt.x >= source.x &&
pt.x <= source.x + source.width)
{
x = pt.x;
}
var y = (pt != null) ? pt.y : Math.round(b + (t - b) / 2);
if (!mxUtils.contains(target, x, y) &&
!mxUtils.contains(source, x, y))
{
result.push(new mxPoint(x, y));
}
if (pt != null &&
pt.x >= target.x &&
pt.x <= target.x + target.width)
{
x = pt.x;
}
else
{
x = view.getRoutingCenterX(target);
}
if (!mxUtils.contains(target, x, y) &&
!mxUtils.contains(source, x, y))
{
result.push(new mxPoint(x, y));
}
if (result.length == 1)
{
if (pt != null && result.length == 1)
{
if (!mxUtils.contains(target, pt.x, y) &&
!mxUtils.contains(source, pt.x, y))
{
result.push(new mxPoint(pt.x, y));
}
}
else
{
var l = Math.max(source.x, target.x);
var r = Math.min(source.x + source.width,
target.x + target.width);
result.push(new mxPoint(l + (r - l) / 2, y));
}
}
}
},
/**
* Function: SegmentConnector
*
* Implements an orthogonal edge style. Use <mxEdgeSegmentHandler>
* as an interactive handler for this style.
*/
SegmentConnector: function(state, source, target, hints, result)
{
// Creates array of all way- and terminalpoints
var pts = state.absolutePoints;
var tol = Math.max(1, state.view.scale);
// Whether the first segment outgoing from the source end is horizontal
var lastPushed = (result.length > 0) ? result[0] : null;
var horizontal = true;
var hint = null;
// Adds waypoints only if outside of tolerance
function pushPoint(pt)
{
if (lastPushed == null || Math.abs(lastPushed.x - pt.x) >= tol || Math.abs(lastPushed.y - pt.y) >= tol)
{
result.push(pt);
lastPushed = pt;
}
return lastPushed;
};
// Adds the first point
var pt = pts[0];
if (pt == null && source != null)
{
pt = new mxPoint(state.view.getRoutingCenterX(source), state.view.getRoutingCenterY(source));
}
else if (pt != null)
{
pt = pt.clone();
}
pt.x = Math.round(pt.x);
pt.y = Math.round(pt.y);
var lastInx = pts.length - 1;
// Adds the waypoints
if (hints != null && hints.length > 0)
{
// Converts all hints and removes nulls
var newHints = [];
for (var i = 0; i < hints.length; i++)
{
var tmp = state.view.transformControlPoint(state, hints[i]);
if (tmp != null)
{
tmp.x = Math.round(tmp.x);
tmp.y = Math.round(tmp.y);
newHints.push(tmp);
}
}
if (newHints.length == 0)
{
return;
}
hints = newHints;
// Aligns source and target hint to fixed points
if (pt != null && hints[0] != null)
{
if (Math.abs(hints[0].x - pt.x) < tol)
{
hints[0].x = pt.x;
}
if (Math.abs(hints[0].y - pt.y) < tol)
{
hints[0].y = pt.y;
}
}
var pe = pts[lastInx];
if (pe != null && hints[hints.length - 1] != null)
{
if (Math.abs(hints[hints.length - 1].x - pe.x) < tol)
{
hints[hints.length - 1].x = pe.x;
}
if (Math.abs(hints[hints.length - 1].y - pe.y) < tol)
{
hints[hints.length - 1].y = pe.y;
}
}
hint = hints[0];
var currentTerm = source;
var currentPt = pts[0];
var hozChan = false;
var vertChan = false;
var currentHint = hint;
if (currentPt != null)
{
currentPt.x = Math.round(currentPt.x);
currentPt.y = Math.round(currentPt.y);
currentTerm = null;
}
// Check for alignment with fixed points and with channels
// at source and target segments only
for (var i = 0; i < 2; i++)
{
var fixedVertAlign = currentPt != null && currentPt.x == currentHint.x;
var fixedHozAlign = currentPt != null && currentPt.y == currentHint.y;
var inHozChan = currentTerm != null && (currentHint.y >= currentTerm.y &&
currentHint.y <= currentTerm.y + currentTerm.height);
var inVertChan = currentTerm != null && (currentHint.x >= currentTerm.x &&
currentHint.x <= currentTerm.x + currentTerm.width);
hozChan = fixedHozAlign || (currentPt == null && inHozChan);
vertChan = fixedVertAlign || (currentPt == null && inVertChan);
// If the current hint falls in both the hor and vert channels in the case
// of a floating port, or if the hint is exactly co-incident with a
// fixed point, ignore the source and try to work out the orientation
// from the target end
if (i==0 && ((hozChan && vertChan) || (fixedVertAlign && fixedHozAlign)))
{
}
else
{
if (currentPt != null && (!fixedHozAlign && !fixedVertAlign) && (inHozChan || inVertChan))
{
horizontal = inHozChan ? false : true;
break;
}
if (vertChan || hozChan)
{
horizontal = hozChan;
if (i == 1)
{
// Work back from target end
horizontal = hints.length % 2 == 0 ? hozChan : vertChan;
}
break;
}
}
currentTerm = target;
currentPt = pts[lastInx];
if (currentPt != null)
{
currentPt.x = Math.round(currentPt.x);
currentPt.y = Math.round(currentPt.y);
currentTerm = null;
}
currentHint = hints[hints.length - 1];
if (fixedVertAlign && fixedHozAlign)
{
hints = hints.slice(1);
}
}
if (horizontal && ((pts[0] != null && pts[0].y != hint.y) ||
(pts[0] == null && source != null &&
(hint.y < source.y || hint.y > source.y + source.height))))
{
pushPoint(new mxPoint(pt.x, hint.y));
}
else if (!horizontal && ((pts[0] != null && pts[0].x != hint.x) ||
(pts[0] == null && source != null &&
(hint.x < source.x || hint.x > source.x + source.width))))
{
pushPoint(new mxPoint(hint.x, pt.y));
}
if (horizontal)
{
pt.y = hint.y;
}
else
{
pt.x = hint.x;
}
for (var i = 0; i < hints.length; i++)
{
horizontal = !horizontal;
hint = hints[i];
// mxLog.show();
// mxLog.debug('hint', i, hint.x, hint.y);
if (horizontal)
{
pt.y = hint.y;
}
else
{
pt.x = hint.x;
}
pushPoint(pt.clone());
}
}
else
{
hint = pt;
// FIXME: First click in connect preview toggles orientation
horizontal = true;
}
// Adds the last point
pt = pts[lastInx];
if (pt == null && target != null)
{
pt = new mxPoint(state.view.getRoutingCenterX(target), state.view.getRoutingCenterY(target));
}
if (pt != null)
{
pt.x = Math.round(pt.x);
pt.y = Math.round(pt.y);
if (hint != null)
{
if (horizontal && ((pts[lastInx] != null && pts[lastInx].y != hint.y) ||
(pts[lastInx] == null && target != null &&
(hint.y < target.y || hint.y > target.y + target.height))))
{
pushPoint(new mxPoint(pt.x, hint.y));
}
else if (!horizontal && ((pts[lastInx] != null && pts[lastInx].x != hint.x) ||
(pts[lastInx] == null && target != null &&
(hint.x < target.x || hint.x > target.x + target.width))))
{
pushPoint(new mxPoint(hint.x, pt.y));
}
}
}
// Removes bends inside the source terminal for floating ports
if (pts[0] == null && source != null)
{
while (result.length > 1 && result[1] != null &&
mxUtils.contains(source, result[1].x, result[1].y))
{
result.splice(1, 1);
}
}
// Removes bends inside the target terminal
if (pts[lastInx] == null && target != null)
{
while (result.length > 1 && result[result.length - 1] != null &&
mxUtils.contains(target, result[result.length - 1].x, result[result.length - 1].y))
{
result.splice(result.length - 1, 1);
}
}
// Removes last point if inside tolerance with end point
if (pe != null && result[result.length - 1] != null &&
Math.abs(pe.x - result[result.length - 1].x) < tol &&
Math.abs(pe.y - result[result.length - 1].y) < tol)
{
result.splice(result.length - 1, 1);
// Lines up second last point in result with end point
if (result[result.length - 1] != null)
{
if (Math.abs(result[result.length - 1].x - pe.x) < tol)
{
result[result.length - 1].x = pe.x;
}
if (Math.abs(result[result.length - 1].y - pe.y) < tol)
{
result[result.length - 1].y = pe.y;
}
}
}
},
orthBuffer: 10,
orthPointsFallback: true,
dirVectors: [ [ -1, 0 ],
[ 0, -1 ], [ 1, 0 ], [ 0, 1 ], [ -1, 0 ], [ 0, -1 ], [ 1, 0 ] ],
wayPoints1: [ [ 0, 0], [ 0, 0], [ 0, 0], [ 0, 0], [ 0, 0], [ 0, 0],
[ 0, 0], [ 0, 0], [ 0, 0], [ 0, 0], [ 0, 0], [ 0, 0] ],
routePatterns: [
[ [ 513, 2308, 2081, 2562 ], [ 513, 1090, 514, 2184, 2114, 2561 ],
[ 513, 1090, 514, 2564, 2184, 2562 ],
[ 513, 2308, 2561, 1090, 514, 2568, 2308 ] ],
[ [ 514, 1057, 513, 2308, 2081, 2562 ], [ 514, 2184, 2114, 2561 ],
[ 514, 2184, 2562, 1057, 513, 2564, 2184 ],
[ 514, 1057, 513, 2568, 2308, 2561 ] ],
[ [ 1090, 514, 1057, 513, 2308, 2081, 2562 ], [ 2114, 2561 ],
[ 1090, 2562, 1057, 513, 2564, 2184 ],
[ 1090, 514, 1057, 513, 2308, 2561, 2568 ] ],
[ [ 2081, 2562 ], [ 1057, 513, 1090, 514, 2184, 2114, 2561 ],
[ 1057, 513, 1090, 514, 2184, 2562, 2564 ],
[ 1057, 2561, 1090, 514, 2568, 2308 ] ] ],
inlineRoutePatterns: [
[ null, [ 2114, 2568 ], null, null ],
[ null, [ 514, 2081, 2114, 2568 ] , null, null ],
[ null, [ 2114, 2561 ], null, null ],
[ [ 2081, 2562 ], [ 1057, 2114, 2568 ],
[ 2184, 2562 ],
null ] ],
vertexSeperations: [],
limits: [
[ 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ],
LEFT_MASK: 32,
TOP_MASK: 64,
RIGHT_MASK: 128,
BOTTOM_MASK: 256,
LEFT: 1,
TOP: 2,
RIGHT: 4,
BOTTOM: 8,
// TODO remove magic numbers
SIDE_MASK: 480,
//mxEdgeStyle.LEFT_MASK | mxEdgeStyle.TOP_MASK | mxEdgeStyle.RIGHT_MASK
//| mxEdgeStyle.BOTTOM_MASK,
CENTER_MASK: 512,
SOURCE_MASK: 1024,
TARGET_MASK: 2048,
VERTEX_MASK: 3072,
// mxEdgeStyle.SOURCE_MASK | mxEdgeStyle.TARGET_MASK,
getJettySize: function(state, source, target, points, isSource)
{
var value = mxUtils.getValue(state.style, (isSource) ? mxConstants.STYLE_SOURCE_JETTY_SIZE :
mxConstants.STYLE_TARGET_JETTY_SIZE, mxUtils.getValue(state.style,
mxConstants.STYLE_JETTY_SIZE, mxEdgeStyle.orthBuffer));
if (value == 'auto')
{
// Computes the automatic jetty size
var type = mxUtils.getValue(state.style, (isSource) ? mxConstants.STYLE_STARTARROW : mxConstants.STYLE_ENDARROW, mxConstants.NONE);
if (type != mxConstants.NONE)
{
var size = mxUtils.getNumber(state.style, (isSource) ? mxConstants.STYLE_STARTSIZE : mxConstants.STYLE_ENDSIZE, mxConstants.DEFAULT_MARKERSIZE);
value = Math.max(2, Math.ceil((size + mxEdgeStyle.orthBuffer) / mxEdgeStyle.orthBuffer)) * mxEdgeStyle.orthBuffer;
}
else
{
value = 2 * mxEdgeStyle.orthBuffer;
}
}
return value;
},
/**
* Function: OrthConnector
*
* Implements a local orthogonal router between the given
* cells.
*
* Parameters:
*
* state - <mxCellState> that represents the edge to be updated.
* source - <mxCellState> that represents the source terminal.
* target - <mxCellState> that represents the target terminal.
* points - List of relative control points.
* result - Array of <mxPoints> that represent the actual points of the
* edge.
*
*/
OrthConnector: function(state, source, target, points, result)
{
var graph = state.view.graph;
var sourceEdge = source == null ? false : graph.getModel().isEdge(source.cell);
var targetEdge = target == null ? false : graph.getModel().isEdge(target.cell);
var pts = state.absolutePoints;
var p0 = pts[0];
var pe = pts[pts.length-1];
var sourceX = source != null ? source.x : p0.x;
var sourceY = source != null ? source.y : p0.y;
var sourceWidth = source != null ? source.width : 0;
var sourceHeight = source != null ? source.height : 0;
var targetX = target != null ? target.x : pe.x;
var targetY = target != null ? target.y : pe.y;
var targetWidth = target != null ? target.width : 0;
var targetHeight = target != null ? target.height : 0;
var scaledSourceBuffer = state.view.scale * mxEdgeStyle.getJettySize(state, source, target, points, true);
var scaledTargetBuffer = state.view.scale * mxEdgeStyle.getJettySize(state, source, target, points, false);
// Workaround for loop routing within buffer zone
if (source != null && target == source)
{
scaledTargetBuffer = Math.max(scaledSourceBuffer, scaledTargetBuffer);
scaledSourceBuffer = scaledTargetBuffer;
}
var totalBuffer = scaledTargetBuffer + scaledSourceBuffer;
var tooShort = false;
// Checks minimum distance for fixed points and falls back to segment connector
if (p0 != null && pe != null)
{
var dx = pe.x - p0.x;
var dy = pe.y - p0.y;
tooShort = dx * dx + dy * dy < totalBuffer * totalBuffer;
}
if (tooShort || (mxEdgeStyle.orthPointsFallback && (points != null &&
points.length > 0)) || sourceEdge || targetEdge)
{
mxEdgeStyle.SegmentConnector(state, source, target, points, result);
return;
}
// Determine the side(s) of the source and target vertices
// that the edge may connect to
// portConstraint [source, target]
var portConstraint = [mxConstants.DIRECTION_MASK_ALL, mxConstants.DIRECTION_MASK_ALL];
var rotation = 0;
if (source != null)
{
portConstraint[0] = mxUtils.getPortConstraints(source, state, true,
mxConstants.DIRECTION_MASK_ALL);
rotation = mxUtils.getValue(source.style, mxConstants.STYLE_ROTATION, 0);
if (rotation != 0)
{
var newRect = mxUtils.getBoundingBox(new mxRectangle(sourceX, sourceY, sourceWidth, sourceHeight), rotation);
sourceX = newRect.x;
sourceY = newRect.y;
sourceWidth = newRect.width;
sourceHeight = newRect.height;
}
}
if (target != null)
{
portConstraint[1] = mxUtils.getPortConstraints(target, state, false,
mxConstants.DIRECTION_MASK_ALL);
rotation = mxUtils.getValue(target.style, mxConstants.STYLE_ROTATION, 0);
if (rotation != 0)
{
var newRect = mxUtils.getBoundingBox(new mxRectangle(targetX, targetY, targetWidth, targetHeight), rotation);
targetX = newRect.x;
targetY = newRect.y;
targetWidth = newRect.width;
targetHeight = newRect.height;
}
}
// Avoids floating point number errors
sourceX = Math.round(sourceX * 10) / 10;
sourceY = Math.round(sourceY * 10) / 10;
sourceWidth = Math.round(sourceWidth * 10) / 10;
sourceHeight = Math.round(sourceHeight * 10) / 10;
targetX = Math.round(targetX * 10) / 10;
targetY = Math.round(targetY * 10) / 10;
targetWidth = Math.round(targetWidth * 10) / 10;
targetHeight = Math.round(targetHeight * 10) / 10;
var dir = [0, 0];
// Work out which faces of the vertices present against each other
// in a way that would allow a 3-segment connection if port constraints
// permitted.
// geo -> [source, target] [x, y, width, height]
var geo = [ [sourceX, sourceY, sourceWidth, sourceHeight] ,
[targetX, targetY, targetWidth, targetHeight] ];
var buffer = [scaledSourceBuffer, scaledTargetBuffer];
for (var i = 0; i < 2; i++)
{
mxEdgeStyle.limits[i][1] = geo[i][0] - buffer[i];
mxEdgeStyle.limits[i][2] = geo[i][1] - buffer[i];
mxEdgeStyle.limits[i][4] = geo[i][0] + geo[i][2] + buffer[i];
mxEdgeStyle.limits[i][8] = geo[i][1] + geo[i][3] + buffer[i];
}
// Work out which quad the target is in
var sourceCenX = geo[0][0] + geo[0][2] / 2.0;
var sourceCenY = geo[0][1] + geo[0][3] / 2.0;
var targetCenX = geo[1][0] + geo[1][2] / 2.0;
var targetCenY = geo[1][1] + geo[1][3] / 2.0;
var dx = sourceCenX - targetCenX;
var dy = sourceCenY - targetCenY;
var quad = 0;
if (dx < 0)
{
if (dy < 0)
{
quad = 2;
}
else
{
quad = 1;
}
}
else
{
if (dy <= 0)
{
quad = 3;
// Special case on x = 0 and negative y
if (dx == 0)
{
quad = 2;
}
}
}
// Check for connection constraints
var currentTerm = null;
if (source != null)
{
currentTerm = p0;
}
var constraint = [ [0.5, 0.5] , [0.5, 0.5] ];
for (var i = 0; i < 2; i++)
{
if (currentTerm != null)
{
constraint[i][0] = (currentTerm.x - geo[i][0]) / geo[i][2];
if (Math.abs(currentTerm.x - geo[i][0]) <= 1)
{
dir[i] = mxConstants.DIRECTION_MASK_WEST;
}
else if (Math.abs(currentTerm.x - geo[i][0] - geo[i][2]) <= 1)
{
dir[i] = mxConstants.DIRECTION_MASK_EAST;
}
constraint[i][1] = (currentTerm.y - geo[i][1]) / geo[i][3];
if (Math.abs(currentTerm.y - geo[i][1]) <= 1)
{
dir[i] = mxConstants.DIRECTION_MASK_NORTH;
}
else if (Math.abs(currentTerm.y - geo[i][1] - geo[i][3]) <= 1)
{
dir[i] = mxConstants.DIRECTION_MASK_SOUTH;
}
}
currentTerm = null;
if (target != null)
{
currentTerm = pe;
}
}
var sourceTopDist = geo[0][1] - (geo[1][1] + geo[1][3]);
var sourceLeftDist = geo[0][0] - (geo[1][0] + geo[1][2]);
var sourceBottomDist = geo[1][1] - (geo[0][1] + geo[0][3]);
var sourceRightDist = geo[1][0] - (geo[0][0] + geo[0][2]);
mxEdgeStyle.vertexSeperations[1] = Math.max(sourceLeftDist - totalBuffer, 0);
mxEdgeStyle.vertexSeperations[2] = Math.max(sourceTopDist - totalBuffer, 0);
mxEdgeStyle.vertexSeperations[4] = Math.max(sourceBottomDist - totalBuffer, 0);
mxEdgeStyle.vertexSeperations[3] = Math.max(sourceRightDist - totalBuffer, 0);
//==============================================================
// Start of source and target direction determination
// Work through the preferred orientations by relative positioning
// of the vertices and list them in preferred and available order
var dirPref = [];
var horPref = [];
var vertPref = [];
horPref[0] = (sourceLeftDist >= sourceRightDist) ? mxConstants.DIRECTION_MASK_WEST
: mxConstants.DIRECTION_MASK_EAST;
vertPref[0] = (sourceTopDist >= sourceBottomDist) ? mxConstants.DIRECTION_MASK_NORTH
: mxConstants.DIRECTION_MASK_SOUTH;
horPref[1] = mxUtils.reversePortConstraints(horPref[0]);
vertPref[1] = mxUtils.reversePortConstraints(vertPref[0]);
var preferredHorizDist = sourceLeftDist >= sourceRightDist ? sourceLeftDist
: sourceRightDist;
var preferredVertDist = sourceTopDist >= sourceBottomDist ? sourceTopDist
: sourceBottomDist;
var prefOrdering = [ [0, 0] , [0, 0] ];
var preferredOrderSet = false;
// If the preferred port isn't available, switch it
for (var i = 0; i < 2; i++)
{
if (dir[i] != 0x0)
{
continue;
}
if ((horPref[i] & portConstraint[i]) == 0)
{
horPref[i] = mxUtils.reversePortConstraints(horPref[i]);
}
if ((vertPref[i] & portConstraint[i]) == 0)
{
vertPref[i] = mxUtils
.reversePortConstraints(vertPref[i]);
}
prefOrdering[i][0] = vertPref[i];
prefOrdering[i][1] = horPref[i];
}
if (preferredVertDist > 0
&& preferredHorizDist > 0)
{
// Possibility of two segment edge connection
if (((horPref[0] & portConstraint[0]) > 0)
&& ((vertPref[1] & portConstraint[1]) > 0))
{
prefOrdering[0][0] = horPref[0];
prefOrdering[0][1] = vertPref[0];
prefOrdering[1][0] = vertPref[1];
prefOrdering[1][1] = horPref[1];
preferredOrderSet = true;
}
else if (((vertPref[0] & portConstraint[0]) > 0)
&& ((horPref[1] & portConstraint[1]) > 0))
{
prefOrdering[0][0] = vertPref[0];
prefOrdering[0][1] = horPref[0];
prefOrdering[1][0] = horPref[1];
prefOrdering[1][1] = vertPref[1];
preferredOrderSet = true;
}
}
if (preferredVertDist > 0 && !preferredOrderSet)
{
prefOrdering[0][0] = vertPref[0];
prefOrdering[0][1] = horPref[0];
prefOrdering[1][0] = vertPref[1];
prefOrdering[1][1] = horPref[1];
preferredOrderSet = true;
}
if (preferredHorizDist > 0 && !preferredOrderSet)
{
prefOrdering[0][0] = horPref[0];
prefOrdering[0][1] = vertPref[0];
prefOrdering[1][0] = horPref[1];
prefOrdering[1][1] = vertPref[1];
preferredOrderSet = true;
}
// The source and target prefs are now an ordered list of
// the preferred port selections
// It the list can contain gaps, compact it
for (var i = 0; i < 2; i++)
{
if (dir[i] != 0x0)
{
continue;
}
if ((prefOrdering[i][0] & portConstraint[i]) == 0)
{
prefOrdering[i][0] = prefOrdering[i][1];
}
dirPref[i] = prefOrdering[i][0] & portConstraint[i];
dirPref[i] |= (prefOrdering[i][1] & portConstraint[i]) << 8;
dirPref[i] |= (prefOrdering[1 - i][i] & portConstraint[i]) << 16;
dirPref[i] |= (prefOrdering[1 - i][1 - i] & portConstraint[i]) << 24;
if ((dirPref[i] & 0xF) == 0)
{
dirPref[i] = dirPref[i] << 8;
}
if ((dirPref[i] & 0xF00) == 0)
{
dirPref[i] = (dirPref[i] & 0xF) | dirPref[i] >> 8;
}
if ((dirPref[i] & 0xF0000) == 0)
{
dirPref[i] = (dirPref[i] & 0xFFFF)
| ((dirPref[i] & 0xF000000) >> 8);
}
dir[i] = dirPref[i] & 0xF;
if (portConstraint[i] == mxConstants.DIRECTION_MASK_WEST
|| portConstraint[i] == mxConstants.DIRECTION_MASK_NORTH
|| portConstraint[i] == mxConstants.DIRECTION_MASK_EAST
|| portConstraint[i] == mxConstants.DIRECTION_MASK_SOUTH)
{
dir[i] = portConstraint[i];
}
}
//==============================================================
// End of source and target direction determination
var sourceIndex = dir[0] == mxConstants.DIRECTION_MASK_EAST ? 3
: dir[0];
var targetIndex = dir[1] == mxConstants.DIRECTION_MASK_EAST ? 3
: dir[1];
sourceIndex -= quad;
targetIndex -= quad;
if (sourceIndex < 1)
{
sourceIndex += 4;
}
if (targetIndex < 1)
{
targetIndex += 4;
}
var routePattern = mxEdgeStyle.routePatterns[sourceIndex - 1][targetIndex - 1];
mxEdgeStyle.wayPoints1[0][0] = geo[0][0];
mxEdgeStyle.wayPoints1[0][1] = geo[0][1];
switch (dir[0])
{
case mxConstants.DIRECTION_MASK_WEST:
mxEdgeStyle.wayPoints1[0][0] -= scaledSourceBuffer;
mxEdgeStyle.wayPoints1[0][1] += constraint[0][1] * geo[0][3];
break;
case mxConstants.DIRECTION_MASK_SOUTH:
mxEdgeStyle.wayPoints1[0][0] += constraint[0][0] * geo[0][2];
mxEdgeStyle.wayPoints1[0][1] += geo[0][3] + scaledSourceBuffer;
break;
case mxConstants.DIRECTION_MASK_EAST:
mxEdgeStyle.wayPoints1[0][0] += geo[0][2] + scaledSourceBuffer;
mxEdgeStyle.wayPoints1[0][1] += constraint[0][1] * geo[0][3];
break;
case mxConstants.DIRECTION_MASK_NORTH:
mxEdgeStyle.wayPoints1[0][0] += constraint[0][0] * geo[0][2];
mxEdgeStyle.wayPoints1[0][1] -= scaledSourceBuffer;
break;
}
var currentIndex = 0;
// Orientation, 0 horizontal, 1 vertical
var lastOrientation = (dir[0] & (mxConstants.DIRECTION_MASK_EAST | mxConstants.DIRECTION_MASK_WEST)) > 0 ? 0
: 1;
var initialOrientation = lastOrientation;
var currentOrientation = 0;
for (var i = 0; i < routePattern.length; i++)
{
var nextDirection = routePattern[i] & 0xF;
// Rotate the index of this direction by the quad
// to get the real direction
var directionIndex = nextDirection == mxConstants.DIRECTION_MASK_EAST ? 3
: nextDirection;
directionIndex += quad;
if (directionIndex > 4)
{
directionIndex -= 4;
}
var direction = mxEdgeStyle.dirVectors[directionIndex - 1];
currentOrientation = (directionIndex % 2 > 0) ? 0 : 1;
// Only update the current index if the point moved
// in the direction of the current segment move,
// otherwise the same point is moved until there is
// a segment direction change
if (currentOrientation != lastOrientation)
{
currentIndex++;
// Copy the previous way point into the new one
// We can't base the new position on index - 1
// because sometime elbows turn out not to exist,
// then we'd have to rewind.
mxEdgeStyle.wayPoints1[currentIndex][0] = mxEdgeStyle.wayPoints1[currentIndex - 1][0];
mxEdgeStyle.wayPoints1[currentIndex][1] = mxEdgeStyle.wayPoints1[currentIndex - 1][1];
}
var tar = (routePattern[i] & mxEdgeStyle.TARGET_MASK) > 0;
var sou = (routePattern[i] & mxEdgeStyle.SOURCE_MASK) > 0;
var side = (routePattern[i] & mxEdgeStyle.SIDE_MASK) >> 5;
side = side << quad;
if (side > 0xF)
{
side = side >> 4;
}
var center = (routePattern[i] & mxEdgeStyle.CENTER_MASK) > 0;
if ((sou || tar) && side < 9)
{
var limit = 0;
var souTar = sou ? 0 : 1;
if (center && currentOrientation == 0)
{
limit = geo[souTar][0] + constraint[souTar][0] * geo[souTar][2];
}
else if (center)
{
limit = geo[souTar][1] + constraint[souTar][1] * geo[souTar][3];
}
else
{
limit = mxEdgeStyle.limits[souTar][side];
}
if (currentOrientation == 0)
{
var lastX = mxEdgeStyle.wayPoints1[currentIndex][0];
var deltaX = (limit - lastX) * direction[0];
if (deltaX > 0)
{
mxEdgeStyle.wayPoints1[currentIndex][0] += direction[0]
* deltaX;
}
}
else
{
var lastY = mxEdgeStyle.wayPoints1[currentIndex][1];
var deltaY = (limit - lastY) * direction[1];
if (deltaY > 0)
{
mxEdgeStyle.wayPoints1[currentIndex][1] += direction[1]
* deltaY;
}
}
}
else if (center)
{
// Which center we're travelling to depend on the current direction
mxEdgeStyle.wayPoints1[currentIndex][0] += direction[0]
* Math.abs(mxEdgeStyle.vertexSeperations[directionIndex] / 2);
mxEdgeStyle.wayPoints1[currentIndex][1] += direction[1]
* Math.abs(mxEdgeStyle.vertexSeperations[directionIndex] / 2);
}
if (currentIndex > 0
&& mxEdgeStyle.wayPoints1[currentIndex][currentOrientation] == mxEdgeStyle.wayPoints1[currentIndex - 1][currentOrientation])
{
currentIndex--;
}
else
{
lastOrientation = currentOrientation;
}
}
for (var i = 0; i <= currentIndex; i++)
{
if (i == currentIndex)
{
// Last point can cause last segment to be in
// same direction as jetty/approach. If so,
// check the number of points is consistent
// with the relative orientation of source and target
// jx. Same orientation requires an even
// number of turns (points), different requires
// odd.
var targetOrientation = (dir[1] & (mxConstants.DIRECTION_MASK_EAST | mxConstants.DIRECTION_MASK_WEST)) > 0 ? 0
: 1;
var sameOrient = targetOrientation == initialOrientation ? 0 : 1;
// (currentIndex + 1) % 2 is 0 for even number of points,
// 1 for odd
if (sameOrient != (currentIndex + 1) % 2)
{
// The last point isn't required
break;
}
}
result.push(new mxPoint(Math.round(mxEdgeStyle.wayPoints1[i][0]), Math.round(mxEdgeStyle.wayPoints1[i][1])));
}
// Removes duplicates
var index = 1;
while (index < result.length)
{
if (result[index - 1] == null || result[index] == null ||
result[index - 1].x != result[index].x ||
result[index - 1].y != result[index].y)
{
index++;
}
else
{
result.splice(index, 1);
}
}
},
getRoutePattern: function(dir, quad, dx, dy)
{
var sourceIndex = dir[0] == mxConstants.DIRECTION_MASK_EAST ? 3
: dir[0];
var targetIndex = dir[1] == mxConstants.DIRECTION_MASK_EAST ? 3
: dir[1];
sourceIndex -= quad;
targetIndex -= quad;
if (sourceIndex < 1)
{
sourceIndex += 4;
}
if (targetIndex < 1)
{
targetIndex += 4;
}
var result = routePatterns[sourceIndex - 1][targetIndex - 1];
if (dx == 0 || dy == 0)
{
if (inlineRoutePatterns[sourceIndex - 1][targetIndex - 1] != null)
{
result = inlineRoutePatterns[sourceIndex - 1][targetIndex - 1];
}
}
return result;
}
};