blob: e27e178d5d581ed5870c6cad968449ec121acbf7 [file] [log] [blame]
/**************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_vcl.hxx"
// bootstrap stuff
#include <sal/main.h>
#include <rtl/bootstrap.hxx>
#include <rtl/ref.hxx>
#include <comphelper/processfactory.hxx>
#include <comphelper/regpathhelper.hxx>
#include <cppuhelper/servicefactory.hxx>
#include <cppuhelper/bootstrap.hxx>
#include <com/sun/star/lang/XMultiServiceFactory.hpp>
#include <com/sun/star/lang/XInitialization.hpp>
#include <com/sun/star/registry/XSimpleRegistry.hpp>
#include <com/sun/star/util/Endianness.hpp>
#include <com/sun/star/rendering/ColorComponentTag.hpp>
#include <com/sun/star/rendering/ColorSpaceType.hpp>
#include <com/sun/star/rendering/RenderingIntent.hpp>
#include <com/sun/star/rendering/XIntegerReadOnlyBitmap.hpp>
#include <com/sun/star/rendering/XIntegerBitmapColorSpace.hpp>
#include <com/sun/star/rendering/XBitmapPalette.hpp>
#include <ucbhelper/contentbroker.hxx>
#include <ucbhelper/configurationkeys.hxx>
#include <cppuhelper/compbase3.hxx>
#include <tools/diagnose_ex.h>
#include <tools/extendapplicationenvironment.hxx>
#include "vcl/svapp.hxx"
#include "vcl/canvastools.hxx"
#include "vcl/canvasbitmap.hxx"
#include "vcl/dialog.hxx"
#include "vcl/outdev.hxx"
#include "vcl/bmpacc.hxx"
#include "vcl/virdev.hxx"
#include "vcl/bitmapex.hxx"
using namespace ::com::sun::star;
using namespace ::vcl::unotools;
// -----------------------------------------------------------------------
void Main();
// -----------------------------------------------------------------------
SAL_IMPLEMENT_MAIN()
{
tools::extendApplicationEnvironment();
uno::Reference< lang::XMultiServiceFactory > xMS;
xMS = cppu::createRegistryServiceFactory(
rtl::OUString( RTL_CONSTASCII_USTRINGPARAM( "applicat.rdb" ) ),
sal_True );
InitVCL( xMS );
::Main();
DeInitVCL();
return 0;
}
// -----------------------------------------------------------------------
namespace com { namespace sun { namespace star { namespace rendering
{
bool operator==( const RGBColor& rLHS, const ARGBColor& rRHS )
{
return rLHS.Red == rRHS.Red && rLHS.Green == rRHS.Green && rLHS.Blue == rRHS.Blue;
}
bool operator==( const ARGBColor& rLHS, const RGBColor& rRHS )
{
return rLHS.Red == rRHS.Red && rLHS.Green == rRHS.Green && rLHS.Blue == rRHS.Blue;
}
} } } }
//----------------------------------------------------------------------------------
namespace
{
class TestApp : public Application
{
public:
virtual void Main();
virtual USHORT Exception( USHORT nError );
};
class TestWindow : public Dialog
{
public:
TestWindow() : Dialog( (Window *) NULL )
{
SetText( rtl::OUString::createFromAscii( "CanvasBitmap test harness" ) );
SetSizePixel( Size( 1024, 1024 ) );
EnablePaint( true );
Show();
}
virtual ~TestWindow() {}
virtual void Paint( const Rectangle& rRect );
};
//----------------------------------------------------------------------------------
static bool g_failure=false;
void test( bool bResult, const char* msg )
{
if( bResult )
{
OSL_TRACE("Testing: %s - PASSED", msg);
}
else
{
g_failure = true;
OSL_TRACE("Testing: %s - FAILED", msg);
}
}
//----------------------------------------------------------------------------------
bool rangeCheck( const rendering::RGBColor& rColor )
{
return rColor.Red < 0.0 || rColor.Red > 1.0 ||
rColor.Green < 0.0 || rColor.Green > 1.0 ||
rColor.Blue < 0.0 || rColor.Blue > 1.0;
}
//----------------------------------------------------------------------------------
void checkCanvasBitmap( const rtl::Reference<VclCanvasBitmap>& xBmp,
const char* msg,
int nOriginalDepth )
{
OSL_TRACE("-------------------------");
OSL_TRACE("Testing %s, with depth %d", msg, nOriginalDepth);
BitmapEx aContainedBmpEx( xBmp->getBitmapEx() );
Bitmap aContainedBmp( aContainedBmpEx.GetBitmap() );
int nDepth = nOriginalDepth;
{
ScopedBitmapReadAccess pAcc( aContainedBmp.AcquireReadAccess(),
aContainedBmp );
nDepth = pAcc->GetBitCount();
}
test( aContainedBmp.GetSizePixel() == Size(200,200),
"Original bitmap size" );
test( xBmp->getSize().Width == 200 && xBmp->getSize().Height == 200,
"Original bitmap size via API" );
test( xBmp->hasAlpha() == aContainedBmpEx.IsTransparent(),
"Correct alpha state" );
test( xBmp->getScaledBitmap( geometry::RealSize2D(500,500), sal_False ).is(),
"getScaledBitmap()" );
rendering::IntegerBitmapLayout aLayout;
uno::Sequence<sal_Int8> aPixelData = xBmp->getData(aLayout, geometry::IntegerRectangle2D(0,0,1,1));
const sal_Int32 nExpectedBitsPerPixel(
aContainedBmpEx.IsTransparent() ? std::max(8,nDepth)+8 : nDepth);
test( aLayout.ScanLines == 1,
"# scanlines" );
test( aLayout.ScanLineBytes == (nExpectedBitsPerPixel+7)/8,
"# scanline bytes" );
test( aLayout.ScanLineStride == (nExpectedBitsPerPixel+7)/8 ||
aLayout.ScanLineStride == -(nExpectedBitsPerPixel+7)/8,
"# scanline stride" );
test( aLayout.PlaneStride == 0,
"# plane stride" );
test( aLayout.ColorSpace.is(),
"Color space there" );
test( aLayout.Palette.is() == (nDepth <= 8),
"Palette existance conforms to bitmap" );
uno::Sequence<sal_Int8> aPixelData2 = xBmp->getPixel( aLayout, geometry::IntegerPoint2D(0,0) );
test( aPixelData2.getLength() == aPixelData.getLength(),
"getData and getPixel return same amount of data" );
aPixelData = xBmp->getData(aLayout, geometry::IntegerRectangle2D(0,0,200,1));
test( aLayout.ScanLines == 1,
"# scanlines" );
test( aLayout.ScanLineBytes == (200*nExpectedBitsPerPixel+7)/8,
"# scanline bytes" );
test( aLayout.ScanLineStride == (200*nExpectedBitsPerPixel+7)/8 ||
aLayout.ScanLineStride == -(200*nExpectedBitsPerPixel+7)/8,
"# scanline stride" );
uno::Sequence< rendering::RGBColor > aRGBColors = xBmp->convertIntegerToRGB( aPixelData );
uno::Sequence< rendering::ARGBColor > aARGBColors = xBmp->convertIntegerToARGB( aPixelData );
const rendering::RGBColor* pRGBStart ( aRGBColors.getConstArray() );
const rendering::RGBColor* pRGBEnd ( aRGBColors.getConstArray()+aRGBColors.getLength() );
const rendering::ARGBColor* pARGBStart( aARGBColors.getConstArray() );
std::pair<const rendering::RGBColor*,
const rendering::ARGBColor*> aRes = std::mismatch( pRGBStart, pRGBEnd, pARGBStart );
test( aRes.first == pRGBEnd,
"argb and rgb colors are equal" );
test( std::find_if(pRGBStart,pRGBEnd,&rangeCheck) == pRGBEnd,
"rgb colors are within [0,1] range" );
test( pRGBStart[0].Red == 1.0 && pRGBStart[0].Green == 1.0 && pRGBStart[0].Blue == 1.0,
"First pixel is white" );
test( pARGBStart[1].Alpha == 1.0,
"Second pixel is opaque" );
if( aContainedBmpEx.IsTransparent() )
{
test( pARGBStart[0].Alpha == 0.0,
"First pixel is fully transparent" );
}
test( pRGBStart[1].Red == 0.0 && pRGBStart[1].Green == 0.0 && pRGBStart[1].Blue == 0.0,
"Second pixel is black" );
if( nOriginalDepth > 8 )
{
const Color aCol(COL_GREEN);
test( pRGBStart[5].Red == vcl::unotools::toDoubleColor(aCol.GetRed()) &&
pRGBStart[5].Green == vcl::unotools::toDoubleColor(aCol.GetGreen()) &&
pRGBStart[5].Blue == vcl::unotools::toDoubleColor(aCol.GetBlue()),
"Sixth pixel is green" );
}
else if( nDepth <= 8 )
{
uno::Reference<rendering::XBitmapPalette> xPal = xBmp->getPalette();
test( xPal.is(),
"8bit or less: needs palette" );
test( xPal->getNumberOfEntries() == 1L << nOriginalDepth,
"Palette has correct entry count" );
uno::Sequence<double> aIndex;
test( xPal->setIndex(aIndex,sal_True,0) == sal_False,
"Palette is read-only" );
test( xPal->getIndex(aIndex,0),
"Palette entry 0 is opaque" );
test( xPal->getColorSpace().is(),
"Palette has a valid color space" );
}
test( pRGBStart[150].Red == 1.0 && pRGBStart[150].Green == 1.0 && pRGBStart[150].Blue == 1.0,
"150th pixel is white" );
if( nOriginalDepth > 8 )
{
const uno::Sequence<sal_Int8> aComponentTags( xBmp->getComponentTags() );
uno::Sequence<rendering::ARGBColor> aARGBColor(1);
uno::Sequence<rendering::RGBColor> aRGBColor(1);
uno::Sequence<sal_Int8> aPixel3, aPixel4;
const Color aCol(COL_GREEN);
aARGBColor[0].Red = vcl::unotools::toDoubleColor(aCol.GetRed());
aARGBColor[0].Green = vcl::unotools::toDoubleColor(aCol.GetGreen());
aARGBColor[0].Blue = vcl::unotools::toDoubleColor(aCol.GetBlue());
aARGBColor[0].Alpha = 1.0;
aRGBColor[0].Red = vcl::unotools::toDoubleColor(aCol.GetRed());
aRGBColor[0].Green = vcl::unotools::toDoubleColor(aCol.GetGreen());
aRGBColor[0].Blue = vcl::unotools::toDoubleColor(aCol.GetBlue());
aPixel3 = xBmp->convertIntegerFromARGB( aARGBColor );
aPixel4 = xBmp->getPixel( aLayout, geometry::IntegerPoint2D(5,0) );
test( aPixel3 == aPixel4,
"Green pixel from bitmap matches with manually converted green pixel" );
if( !aContainedBmpEx.IsTransparent() )
{
aPixel3 = xBmp->convertIntegerFromRGB( aRGBColor );
test( aPixel3 == aPixel4,
"Green pixel from bitmap matches with manually RGB-converted green pixel" );
}
}
}
//----------------------------------------------------------------------------------
void checkBitmapImport( const rtl::Reference<VclCanvasBitmap>& xBmp,
const char* msg,
int nOriginalDepth )
{
OSL_TRACE("-------------------------");
OSL_TRACE("Testing %s, with depth %d", msg, nOriginalDepth);
BitmapEx aContainedBmpEx( xBmp->getBitmapEx() );
Bitmap aContainedBmp( aContainedBmpEx.GetBitmap() );
int nDepth = nOriginalDepth;
{
ScopedBitmapReadAccess pAcc( aContainedBmp.AcquireReadAccess(),
aContainedBmp );
nDepth = pAcc->GetBitCount();
}
test( aContainedBmp.GetSizePixel() == Size(200,200),
"Original bitmap size" );
test( xBmp->getSize().Width == 200 && xBmp->getSize().Height == 200,
"Original bitmap size via API" );
test( xBmp->hasAlpha() == aContainedBmpEx.IsTransparent(),
"Correct alpha state" );
test( xBmp->getScaledBitmap( geometry::RealSize2D(500,500), sal_False ).is(),
"getScaledBitmap()" );
rendering::IntegerBitmapLayout aLayout;
uno::Sequence<sal_Int8> aPixelData = xBmp->getData(aLayout, geometry::IntegerRectangle2D(0,0,1,1));
const sal_Int32 nExpectedBitsPerPixel(
aContainedBmpEx.IsTransparent() ? std::max(8,nDepth)+8 : nDepth);
test( aLayout.ScanLines == 1,
"# scanlines" );
test( aLayout.ScanLineBytes == (nExpectedBitsPerPixel+7)/8,
"# scanline bytes" );
test( aLayout.ScanLineStride == (nExpectedBitsPerPixel+7)/8 ||
aLayout.ScanLineStride == -(nExpectedBitsPerPixel+7)/8,
"# scanline stride" );
test( aLayout.PlaneStride == 0,
"# plane stride" );
test( aLayout.ColorSpace.is(),
"Color space there" );
test( aLayout.Palette.is() == (nDepth <= 8),
"Palette existance conforms to bitmap" );
uno::Sequence<sal_Int8> aPixelData2 = xBmp->getPixel( aLayout, geometry::IntegerPoint2D(0,0) );
test( aPixelData2.getLength() == aPixelData.getLength(),
"getData and getPixel return same amount of data" );
aPixelData = xBmp->getData(aLayout, geometry::IntegerRectangle2D(0,0,200,1));
test( aLayout.ScanLines == 1,
"# scanlines" );
test( aLayout.ScanLineBytes == (200*nExpectedBitsPerPixel+7)/8,
"# scanline bytes" );
test( aLayout.ScanLineStride == (200*nExpectedBitsPerPixel+7)/8 ||
aLayout.ScanLineStride == -(200*nExpectedBitsPerPixel+7)/8,
"# scanline stride" );
uno::Sequence< rendering::RGBColor > aRGBColors = xBmp->convertIntegerToRGB( aPixelData );
uno::Sequence< rendering::ARGBColor > aARGBColors = xBmp->convertIntegerToARGB( aPixelData );
const rendering::RGBColor* pRGBStart ( aRGBColors.getConstArray() );
const rendering::RGBColor* pRGBEnd ( aRGBColors.getConstArray()+aRGBColors.getLength() );
const rendering::ARGBColor* pARGBStart( aARGBColors.getConstArray() );
std::pair<const rendering::RGBColor*,
const rendering::ARGBColor*> aRes = std::mismatch( pRGBStart, pRGBEnd, pARGBStart );
test( aRes.first == pRGBEnd,
"argb and rgb colors are equal" );
test( std::find_if(pRGBStart,pRGBEnd,&rangeCheck) == pRGBEnd,
"rgb colors are within [0,1] range" );
test( pRGBStart[0].Red == 1.0 && pRGBStart[0].Green == 1.0 && pRGBStart[0].Blue == 1.0,
"First pixel is white" );
test( pARGBStart[1].Alpha == 1.0,
"Second pixel is opaque" );
if( aContainedBmpEx.IsTransparent() )
{
test( pARGBStart[0].Alpha == 0.0,
"First pixel is fully transparent" );
}
test( pRGBStart[1].Red == 0.0 && pRGBStart[1].Green == 0.0 && pRGBStart[1].Blue == 0.0,
"Second pixel is black" );
if( nOriginalDepth > 8 )
{
const Color aCol(COL_GREEN);
test( pRGBStart[5].Red == vcl::unotools::toDoubleColor(aCol.GetRed()) &&
pRGBStart[5].Green == vcl::unotools::toDoubleColor(aCol.GetGreen()) &&
pRGBStart[5].Blue == vcl::unotools::toDoubleColor(aCol.GetBlue()),
"Sixth pixel is green" );
}
else if( nDepth <= 8 )
{
uno::Reference<rendering::XBitmapPalette> xPal = xBmp->getPalette();
test( xPal.is(),
"8bit or less: needs palette" );
test( xPal->getNumberOfEntries() == 1L << nOriginalDepth,
"Palette has correct entry count" );
uno::Sequence<double> aIndex;
test( xPal->setIndex(aIndex,sal_True,0) == sal_False,
"Palette is read-only" );
test( xPal->getIndex(aIndex,0),
"Palette entry 0 is opaque" );
test( xPal->getColorSpace().is(),
"Palette has a valid color space" );
}
test( pRGBStart[150].Red == 1.0 && pRGBStart[150].Green == 1.0 && pRGBStart[150].Blue == 1.0,
"150th pixel is white" );
if( nOriginalDepth > 8 )
{
const uno::Sequence<sal_Int8> aComponentTags( xBmp->getComponentTags() );
uno::Sequence<rendering::ARGBColor> aARGBColor(1);
uno::Sequence<rendering::RGBColor> aRGBColor(1);
uno::Sequence<sal_Int8> aPixel3, aPixel4;
const Color aCol(COL_GREEN);
aARGBColor[0].Red = vcl::unotools::toDoubleColor(aCol.GetRed());
aARGBColor[0].Green = vcl::unotools::toDoubleColor(aCol.GetGreen());
aARGBColor[0].Blue = vcl::unotools::toDoubleColor(aCol.GetBlue());
aARGBColor[0].Alpha = 1.0;
aRGBColor[0].Red = vcl::unotools::toDoubleColor(aCol.GetRed());
aRGBColor[0].Green = vcl::unotools::toDoubleColor(aCol.GetGreen());
aRGBColor[0].Blue = vcl::unotools::toDoubleColor(aCol.GetBlue());
aPixel3 = xBmp->convertIntegerFromARGB( aARGBColor );
aPixel4 = xBmp->getPixel( aLayout, geometry::IntegerPoint2D(5,0) );
test( aPixel3 == aPixel4,
"Green pixel from bitmap matches with manually converted green pixel" );
if( !aContainedBmpEx.IsTransparent() )
{
aPixel3 = xBmp->convertIntegerFromRGB( aRGBColor );
test( aPixel3 == aPixel4,
"Green pixel from bitmap matches with manually RGB-converted green pixel" );
}
}
}
//----------------------------------------------------------------------------------
class TestBitmap : public cppu::WeakImplHelper3< rendering::XIntegerReadOnlyBitmap,
rendering::XBitmapPalette,
rendering::XIntegerBitmapColorSpace >
{
private:
geometry::IntegerSize2D maSize;
uno::Sequence<sal_Int8> maComponentTags;
uno::Sequence<sal_Int32> maComponentBitCounts;
rendering::IntegerBitmapLayout maLayout;
const sal_Int32 mnBitsPerPixel;
// XBitmap
virtual geometry::IntegerSize2D SAL_CALL getSize() throw (uno::RuntimeException) { return maSize; }
virtual ::sal_Bool SAL_CALL hasAlpha( ) throw (uno::RuntimeException) { return mnBitsPerPixel != 8; }
virtual uno::Reference< rendering::XBitmap > SAL_CALL getScaledBitmap( const geometry::RealSize2D&,
sal_Bool ) throw (uno::RuntimeException) { return this; }
// XIntegerReadOnlyBitmap
virtual uno::Sequence< ::sal_Int8 > SAL_CALL getData( rendering::IntegerBitmapLayout& bitmapLayout,
const geometry::IntegerRectangle2D& rect ) throw (lang::IndexOutOfBoundsException,
rendering::VolatileContentDestroyedException, uno::RuntimeException)
{
test( rect.X1 >= 0, "X1 within bounds" );
test( rect.Y1 >= 0, "Y1 within bounds" );
test( rect.X2 <= maSize.Width, "X2 within bounds" );
test( rect.Y2 <= maSize.Height, "Y2 within bounds" );
bitmapLayout = getMemoryLayout();
const sal_Int32 nWidth = rect.X2-rect.X1;
const sal_Int32 nHeight = rect.Y2-rect.Y1;
const sal_Int32 nScanlineLen = (nWidth * mnBitsPerPixel + 7)/8;
uno::Sequence<sal_Int8> aRes( nScanlineLen * nHeight );
sal_Int8* pOut = aRes.getArray();
bitmapLayout.ScanLines = nHeight;
bitmapLayout.ScanLineBytes =
bitmapLayout.ScanLineStride= nScanlineLen;
if( mnBitsPerPixel == 8 )
{
for( sal_Int32 y=0; y<nHeight; ++y )
{
for( sal_Int32 x=0; x<nWidth; ++x )
pOut[ y*nScanlineLen + x ] = sal_Int8(x);
}
}
else
{
for( sal_Int32 y=0; y<nHeight; ++y )
{
for( sal_Int32 x=0; x<nWidth; ++x )
{
pOut[ y*nScanlineLen + 4*x ] = sal_Int8(rect.X1);
pOut[ y*nScanlineLen + 4*x + 1 ] = sal_Int8(rect.Y2);
pOut[ y*nScanlineLen + 4*x + 2 ] = sal_Int8(x);
pOut[ y*nScanlineLen + 4*x + 3 ] = sal_Int8(rect.Y1);
}
}
}
return aRes;
}
virtual uno::Sequence< ::sal_Int8 > SAL_CALL getPixel( rendering::IntegerBitmapLayout&,
const geometry::IntegerPoint2D& ) throw (lang::IndexOutOfBoundsException,
rendering::VolatileContentDestroyedException, uno::RuntimeException)
{
test(false, "Method not implemented");
return uno::Sequence< sal_Int8 >();
}
virtual uno::Reference< rendering::XBitmapPalette > SAL_CALL getPalette( ) throw (uno::RuntimeException)
{
uno::Reference< XBitmapPalette > aRet;
if( mnBitsPerPixel == 8 )
aRet.set(this);
return aRet;
}
virtual rendering::IntegerBitmapLayout SAL_CALL getMemoryLayout( ) throw (uno::RuntimeException)
{
rendering::IntegerBitmapLayout aLayout( maLayout );
const sal_Int32 nScanlineLen = (maSize.Width * mnBitsPerPixel + 7)/8;
aLayout.ScanLines = maSize.Height;
aLayout.ScanLineBytes =
aLayout.ScanLineStride= nScanlineLen;
aLayout.Palette = getPalette();
aLayout.ColorSpace.set( this );
return aLayout;
}
// XBitmapPalette
virtual sal_Int32 SAL_CALL getNumberOfEntries() throw (uno::RuntimeException)
{
test( getPalette().is(),
"Got palette interface call without handing out palette?!" );
return 255;
}
virtual ::sal_Bool SAL_CALL getIndex( uno::Sequence< double >& entry,
::sal_Int32 nIndex ) throw (lang::IndexOutOfBoundsException,
uno::RuntimeException)
{
test( getPalette().is(),
"Got palette interface call without handing out palette?!" );
test( nIndex >= 0 && nIndex < 256,
"Index out of range" );
entry = colorToStdColorSpaceSequence(
Color(UINT8(nIndex),
UINT8(nIndex),
UINT8(nIndex)) );
return sal_True; // no palette transparency here.
}
virtual ::sal_Bool SAL_CALL setIndex( const uno::Sequence< double >&,
::sal_Bool,
::sal_Int32 nIndex ) throw (lang::IndexOutOfBoundsException,
lang::IllegalArgumentException,
uno::RuntimeException)
{
test( getPalette().is(),
"Got palette interface call without handing out palette?!" );
test( nIndex >= 0 && nIndex < 256,
"Index out of range" );
return sal_False;
}
struct PaletteColorSpaceHolder: public rtl::StaticWithInit<uno::Reference<rendering::XColorSpace>,
PaletteColorSpaceHolder>
{
uno::Reference<rendering::XColorSpace> operator()()
{
return vcl::unotools::createStandardColorSpace();
}
};
virtual uno::Reference< rendering::XColorSpace > SAL_CALL getColorSpace( ) throw (uno::RuntimeException)
{
// this is the method from XBitmapPalette. Return palette color
// space here
return PaletteColorSpaceHolder::get();
}
// XIntegerBitmapColorSpace
virtual ::sal_Int8 SAL_CALL getType( ) throw (uno::RuntimeException)
{
return rendering::ColorSpaceType::RGB;
}
virtual uno::Sequence< sal_Int8 > SAL_CALL getComponentTags( ) throw (uno::RuntimeException)
{
return maComponentTags;
}
virtual ::sal_Int8 SAL_CALL getRenderingIntent( ) throw (uno::RuntimeException)
{
return rendering::RenderingIntent::PERCEPTUAL;
}
virtual uno::Sequence< beans::PropertyValue > SAL_CALL getProperties( ) throw (uno::RuntimeException)
{
test(false, "Method not implemented");
return uno::Sequence< ::beans::PropertyValue >();
}
virtual uno::Sequence< double > SAL_CALL convertColorSpace( const uno::Sequence< double >&,
const uno::Reference< rendering::XColorSpace >& ) throw (uno::RuntimeException)
{
test(false, "Method not implemented");
return uno::Sequence< double >();
}
virtual uno::Sequence< rendering::RGBColor > SAL_CALL convertToRGB( const uno::Sequence< double >& ) throw (lang::IllegalArgumentException,
uno::RuntimeException)
{
test(false, "Method not implemented");
return uno::Sequence< rendering::RGBColor >();
}
virtual uno::Sequence< rendering::ARGBColor > SAL_CALL convertToARGB( const uno::Sequence< double >& ) throw (lang::IllegalArgumentException,
uno::RuntimeException)
{
test(false, "Method not implemented");
return uno::Sequence< rendering::ARGBColor >();
}
virtual uno::Sequence< rendering::ARGBColor > SAL_CALL convertToPARGB( const uno::Sequence< double >& ) throw (lang::IllegalArgumentException,
uno::RuntimeException)
{
test(false, "Method not implemented");
return uno::Sequence< rendering::ARGBColor >();
}
virtual uno::Sequence< double > SAL_CALL convertFromRGB( const uno::Sequence< rendering::RGBColor >& ) throw (lang::IllegalArgumentException,
uno::RuntimeException)
{
test(false, "Method not implemented");
return uno::Sequence< double >();
}
virtual uno::Sequence< double > SAL_CALL convertFromARGB( const uno::Sequence< rendering::ARGBColor >& ) throw (lang::IllegalArgumentException,
uno::RuntimeException)
{
test(false, "This method is not expected to be called!");
return uno::Sequence< double >();
}
virtual uno::Sequence< double > SAL_CALL convertFromPARGB( const uno::Sequence< rendering::ARGBColor >& ) throw (lang::IllegalArgumentException,
uno::RuntimeException)
{
test(false, "This method is not expected to be called!");
return uno::Sequence< double >();
}
virtual ::sal_Int32 SAL_CALL getBitsPerPixel( ) throw (uno::RuntimeException)
{
return mnBitsPerPixel;
}
virtual uno::Sequence< ::sal_Int32 > SAL_CALL getComponentBitCounts( ) throw (uno::RuntimeException)
{
return maComponentBitCounts;
}
virtual ::sal_Int8 SAL_CALL getEndianness( ) throw (uno::RuntimeException)
{
return util::Endianness::LITTLE;
}
virtual uno::Sequence< double > SAL_CALL convertFromIntegerColorSpace( const uno::Sequence< ::sal_Int8 >& ,
const uno::Reference< rendering::XColorSpace >& ) throw (lang::IllegalArgumentException,
uno::RuntimeException)
{
test(false, "Method not implemented");
return uno::Sequence< double >();
}
virtual uno::Sequence< ::sal_Int8 > SAL_CALL convertToIntegerColorSpace( const uno::Sequence< ::sal_Int8 >& ,
const uno::Reference< rendering::XIntegerBitmapColorSpace >& ) throw (lang::IllegalArgumentException,
uno::RuntimeException)
{
test(false, "Method not implemented");
return uno::Sequence< sal_Int8 >();
}
virtual uno::Sequence< rendering::RGBColor > SAL_CALL convertIntegerToRGB( const uno::Sequence< ::sal_Int8 >& deviceColor ) throw (lang::IllegalArgumentException,
uno::RuntimeException)
{
const uno::Sequence< rendering::ARGBColor > aTemp( convertIntegerToARGB(deviceColor) );
const sal_Size nLen(aTemp.getLength());
uno::Sequence< rendering::RGBColor > aRes( nLen );
rendering::RGBColor* pOut = aRes.getArray();
for( sal_Size i=0; i<nLen; ++i )
{
*pOut++ = rendering::RGBColor(aTemp[i].Red,
aTemp[i].Green,
aTemp[i].Blue);
}
return aRes;
}
virtual uno::Sequence< rendering::ARGBColor > SAL_CALL convertIntegerToARGB( const uno::Sequence< ::sal_Int8 >& deviceColor ) throw (lang::IllegalArgumentException,
uno::RuntimeException)
{
const sal_Size nLen( deviceColor.getLength() );
const sal_Int32 nBytesPerPixel(mnBitsPerPixel == 8 ? 1 : 4);
test(nLen%nBytesPerPixel==0,
"number of channels no multiple of pixel element count");
uno::Sequence< rendering::ARGBColor > aRes( nLen / nBytesPerPixel );
rendering::ARGBColor* pOut( aRes.getArray() );
if( getPalette().is() )
{
for( sal_Size i=0; i<nLen; ++i )
{
*pOut++ = rendering::ARGBColor(
1.0,
vcl::unotools::toDoubleColor(deviceColor[i]),
vcl::unotools::toDoubleColor(deviceColor[i]),
vcl::unotools::toDoubleColor(deviceColor[i]));
}
}
else
{
for( sal_Size i=0; i<nLen; i+=4 )
{
*pOut++ = rendering::ARGBColor(
vcl::unotools::toDoubleColor(deviceColor[i+3]),
vcl::unotools::toDoubleColor(deviceColor[i+0]),
vcl::unotools::toDoubleColor(deviceColor[i+1]),
vcl::unotools::toDoubleColor(deviceColor[i+2]));
}
}
return aRes;
}
virtual uno::Sequence< rendering::ARGBColor > SAL_CALL convertIntegerToPARGB( const uno::Sequence< ::sal_Int8 >& deviceColor ) throw (lang::IllegalArgumentException,
uno::RuntimeException)
{
const sal_Size nLen( deviceColor.getLength() );
const sal_Int32 nBytesPerPixel(mnBitsPerPixel == 8 ? 1 : 4);
test(nLen%nBytesPerPixel==0,
"number of channels no multiple of pixel element count");
uno::Sequence< rendering::ARGBColor > aRes( nLen / nBytesPerPixel );
rendering::ARGBColor* pOut( aRes.getArray() );
if( getPalette().is() )
{
for( sal_Size i=0; i<nLen; ++i )
{
*pOut++ = rendering::ARGBColor(
1.0,
vcl::unotools::toDoubleColor(deviceColor[i]),
vcl::unotools::toDoubleColor(deviceColor[i]),
vcl::unotools::toDoubleColor(deviceColor[i]));
}
}
else
{
for( sal_Size i=0; i<nLen; i+=4 )
{
const double fAlpha=vcl::unotools::toDoubleColor(deviceColor[i+3]);
*pOut++ = rendering::ARGBColor(
fAlpha,
fAlpha*vcl::unotools::toDoubleColor(deviceColor[i+0]),
fAlpha*vcl::unotools::toDoubleColor(deviceColor[i+1]),
fAlpha*vcl::unotools::toDoubleColor(deviceColor[i+2]));
}
}
return aRes;
}
virtual uno::Sequence< ::sal_Int8 > SAL_CALL convertIntegerFromRGB( const uno::Sequence< rendering::RGBColor >& ) throw (lang::IllegalArgumentException,
uno::RuntimeException)
{
test(false, "Method not implemented");
return uno::Sequence< sal_Int8 >();
}
virtual uno::Sequence< ::sal_Int8 > SAL_CALL convertIntegerFromARGB( const uno::Sequence< rendering::ARGBColor >& ) throw (lang::IllegalArgumentException,
uno::RuntimeException)
{
test(false, "Method not implemented");
return uno::Sequence< sal_Int8 >();
}
virtual uno::Sequence< ::sal_Int8 > SAL_CALL convertIntegerFromPARGB( const uno::Sequence< rendering::ARGBColor >& ) throw (lang::IllegalArgumentException,
uno::RuntimeException)
{
test(false, "Method not implemented");
return uno::Sequence< sal_Int8 >();
}
public:
TestBitmap( const geometry::IntegerSize2D& rSize, bool bPalette ) :
maSize(rSize),
maComponentTags(),
maComponentBitCounts(),
maLayout(),
mnBitsPerPixel( bPalette ? 8 : 32 )
{
if( bPalette )
{
maComponentTags.realloc(1);
maComponentTags[0] = rendering::ColorComponentTag::INDEX;
maComponentBitCounts.realloc(1);
maComponentBitCounts[0] = 8;
}
else
{
maComponentTags.realloc(4);
sal_Int8* pTags = maComponentTags.getArray();
pTags[0] = rendering::ColorComponentTag::RGB_BLUE;
pTags[1] = rendering::ColorComponentTag::RGB_GREEN;
pTags[2] = rendering::ColorComponentTag::RGB_RED;
pTags[3] = rendering::ColorComponentTag::ALPHA;
maComponentBitCounts.realloc(4);
sal_Int32* pCounts = maComponentBitCounts.getArray();
pCounts[0] = 8;
pCounts[1] = 8;
pCounts[2] = 8;
pCounts[3] = 8;
}
maLayout.ScanLines = 0;
maLayout.ScanLineBytes = 0;
maLayout.ScanLineStride = 0;
maLayout.PlaneStride = 0;
maLayout.ColorSpace.clear();
maLayout.Palette.clear();
maLayout.IsMsbFirst = sal_False;
}
};
//----------------------------------------------------------------------------------
void TestWindow::Paint( const Rectangle& )
{
static sal_Int8 lcl_depths[]={1,4,8,16,24};
try
{
// Testing VclCanvasBitmap wrapper
// ===============================
for( unsigned int i=0; i<sizeof(lcl_depths)/sizeof(*lcl_depths); ++i )
{
const sal_Int8 nDepth( lcl_depths[i] );
Bitmap aBitmap(Size(200,200),nDepth);
aBitmap.Erase(COL_WHITE);
{
ScopedBitmapWriteAccess pAcc(aBitmap.AcquireWriteAccess(),
aBitmap);
if( pAcc.get() )
{
BitmapColor aBlack(0);
BitmapColor aWhite(0);
if( pAcc->HasPalette() )
{
aBlack.SetIndex( sal::static_int_cast<BYTE>(pAcc->GetBestPaletteIndex(BitmapColor(0,0,0))) );
aWhite.SetIndex( sal::static_int_cast<BYTE>(pAcc->GetBestPaletteIndex(BitmapColor(255,255,255))) );
}
else
{
aBlack = Color(COL_BLACK);
aWhite = Color(COL_WHITE);
}
pAcc->SetFillColor(COL_GREEN);
pAcc->FillRect(Rectangle(0,0,100,100));
pAcc->SetPixel(0,0,aWhite);
pAcc->SetPixel(0,1,aBlack);
pAcc->SetPixel(0,2,aWhite);
}
}
rtl::Reference<VclCanvasBitmap> xBmp( new VclCanvasBitmap(aBitmap) );
checkCanvasBitmap( xBmp, "single bitmap", nDepth );
Bitmap aMask(Size(200,200),1);
aMask.Erase(COL_WHITE);
{
ScopedBitmapWriteAccess pAcc(aMask.AcquireWriteAccess(),
aMask);
if( pAcc.get() )
{
pAcc->SetFillColor(COL_BLACK);
pAcc->FillRect(Rectangle(0,0,100,100));
pAcc->SetPixel(0,0,BitmapColor(1));
pAcc->SetPixel(0,1,BitmapColor(0));
pAcc->SetPixel(0,2,BitmapColor(1));
}
}
xBmp.set( new VclCanvasBitmap(BitmapEx(aBitmap,aMask)) );
checkCanvasBitmap( xBmp, "masked bitmap", nDepth );
AlphaMask aAlpha(Size(200,200));
aAlpha.Erase(255);
{
BitmapWriteAccess* pAcc = aAlpha.AcquireWriteAccess();
if( pAcc )
{
pAcc->SetFillColor(COL_BLACK);
pAcc->FillRect(Rectangle(0,0,100,100));
pAcc->SetPixel(0,0,BitmapColor(255));
pAcc->SetPixel(0,1,BitmapColor(0));
pAcc->SetPixel(0,2,BitmapColor(255));
aAlpha.ReleaseAccess(pAcc);
}
}
xBmp.set( new VclCanvasBitmap(BitmapEx(aBitmap,aAlpha)) );
checkCanvasBitmap( xBmp, "alpha bitmap", nDepth );
}
// Testing XBitmap import
// ======================
uno::Reference< rendering::XIntegerReadOnlyBitmap > xTestBmp(
new TestBitmap( geometry::IntegerSize2D(10,10), true ));
BitmapEx aBmp = vcl::unotools::bitmapExFromXBitmap(xTestBmp);
test( aBmp.IsTransparent() == false,
"Palette bitmap is not transparent" );
test( aBmp.GetSizePixel() == Size(10,10),
"Bitmap has size (10,10)" );
test( aBmp.GetBitCount() == 8,
"Bitmap has bitcount of 8" );
{
BitmapReadAccess* pBmpAcc = aBmp.GetBitmap().AcquireReadAccess();
test( pBmpAcc,
"Bitmap has valid BitmapReadAccess" );
test(pBmpAcc->GetPixel(0,0) == BitmapColor(0),
"(0,0) correct content");
test(pBmpAcc->GetPixel(2,2) == BitmapColor(2),
"(2,2) correct content");
test(pBmpAcc->GetPixel(2,9) == BitmapColor(9),
"(9,2) correct content");
aBmp.GetBitmap().ReleaseAccess(pBmpAcc);
}
xTestBmp.set( new TestBitmap( geometry::IntegerSize2D(10,10), false ));
aBmp = vcl::unotools::bitmapExFromXBitmap(xTestBmp);
test( aBmp.IsTransparent() == TRUE,
"Palette bitmap is transparent" );
test( aBmp.IsAlpha() == TRUE,
"Palette bitmap has alpha" );
test( aBmp.GetSizePixel() == Size(10,10),
"Bitmap has size (10,10)" );
test( aBmp.GetBitCount() == 24,
"Bitmap has bitcount of 24" );
{
BitmapReadAccess* pBmpAcc = aBmp.GetBitmap().AcquireReadAccess();
BitmapReadAccess* pAlphaAcc = aBmp.GetAlpha().AcquireReadAccess();
test( pBmpAcc,
"Bitmap has valid BitmapReadAccess" );
test( pAlphaAcc,
"Bitmap has valid alpha BitmapReadAccess" );
test(pBmpAcc->GetPixel(0,0) == BitmapColor(0,1,0),
"(0,0) correct content");
test(pAlphaAcc->GetPixel(0,0) == BitmapColor(255),
"(0,0) correct alpha content");
test(pBmpAcc->GetPixel(2,2) == BitmapColor(0,3,2),
"(2,2) correct content");
test(pAlphaAcc->GetPixel(2,2) == BitmapColor(253),
"(2,2) correct alpha content");
test(pBmpAcc->GetPixel(2,9) == BitmapColor(0,3,9),
"(9,2) correct content");
test(pAlphaAcc->GetPixel(2,9) == BitmapColor(253),
"(9,2) correct alpha content");
aBmp.GetAlpha().ReleaseAccess(pAlphaAcc);
aBmp.GetBitmap().ReleaseAccess(pBmpAcc);
}
}
catch( uno::Exception& )
{
DBG_UNHANDLED_EXCEPTION();
exit(2);
}
catch( std::exception& )
{
OSL_TRACE( "Caught std exception!" );
}
if( g_failure )
exit(2);
}
} // namespace
void Main()
{
TestWindow aWindow;
aWindow.Execute();
aWindow.SetText( XubString( RTL_CONSTASCII_USTRINGPARAM( "VCL - canvasbitmaptest" ) ) );
Application::Execute();
}