blob: 41e0360705d2e092ded4c7f15067a5c1814f70b6 [file] [log] [blame]
/**************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
#include "precompiled_vcl.hxx"
#include "svdata.hxx"
#include "vcl/arrange.hxx"
#include "vcl/edit.hxx"
#include "vcl/svapp.hxx"
#include "com/sun/star/beans/PropertyValue.hpp"
#include "com/sun/star/awt/Rectangle.hpp"
#include "osl/diagnose.h"
using namespace vcl;
using namespace com::sun::star;
// ----------------------------------------
// vcl::WindowArranger
//-----------------------------------------
long WindowArranger::getDefaultBorder()
{
ImplSVData* pSVData = ImplGetSVData();
long nResult = pSVData->maAppData.mnDefaultLayoutBorder;
if( nResult < 0 )
{
OutputDevice* pDefDev = Application::GetDefaultDevice();
if( pDefDev )
{
Size aBorder( pDefDev->LogicToPixel( Size( 3, 3 ), MapMode( MAP_APPFONT ) ) );
nResult = pSVData->maAppData.mnDefaultLayoutBorder = aBorder.Height();
}
}
return nResult > 0 ? nResult : 0;
}
WindowArranger::~WindowArranger()
{}
void WindowArranger::setParent( WindowArranger* i_pParent )
{
OSL_VERIFY( i_pParent->m_pParentWindow == m_pParentWindow || m_pParentWindow == NULL );
m_pParentArranger = i_pParent;
m_pParentWindow = i_pParent->m_pParentWindow;
setParentWindow( m_pParentWindow );
}
void WindowArranger::setParentWindow( Window* i_pNewParent )
{
m_pParentWindow = i_pNewParent;
size_t nEle = countElements();
for( size_t i = 0; i < nEle; i++ )
{
Element* pEle = getElement( i );
if( pEle ) // sanity check
{
#if OSL_DEBUG_LEVEL > 0
if( pEle->m_pElement )
{
OSL_VERIFY( pEle->m_pElement->GetParent() == i_pNewParent );
}
#endif
if( pEle->m_pChild )
pEle->m_pChild->setParentWindow( i_pNewParent );
}
}
}
void WindowArranger::show( bool i_bShow, bool i_bImmediateUpdate )
{
size_t nEle = countElements();
for( size_t i = 0; i < nEle; i++ )
{
Element* pEle = getElement( i );
if( pEle ) // sanity check
{
pEle->m_bHidden = ! i_bShow;
if( pEle->m_pElement )
pEle->m_pElement->Show( i_bShow );
if( pEle->m_pChild.get() )
pEle->m_pChild->show( i_bShow, false );
}
}
if( m_pParentArranger )
{
nEle = m_pParentArranger->countElements();
for( size_t i = 0; i < nEle; i++ )
{
Element* pEle = m_pParentArranger->getElement( i );
if( pEle && pEle->m_pChild.get() == this )
{
pEle->m_bHidden = ! i_bShow;
break;
}
}
}
if( i_bImmediateUpdate )
{
// find the topmost parent
WindowArranger* pResize = this;
while( pResize->m_pParentArranger )
pResize = pResize->m_pParentArranger;
pResize->resize();
}
}
bool WindowArranger::isVisible() const
{
size_t nEle = countElements();
for( size_t i = 0; i < nEle; i++ )
{
const Element* pEle = getConstElement( i );
if( pEle->isVisible() )
return true;
}
return false;
}
bool WindowArranger::Element::isVisible() const
{
bool bVisible = false;
if( ! m_bHidden )
{
if( m_pElement )
bVisible = m_pElement->IsVisible();
else if( m_pChild )
bVisible = m_pChild->isVisible();
}
return bVisible;
}
sal_Int32 WindowArranger::Element::getExpandPriority() const
{
sal_Int32 nPrio = m_nExpandPriority;
if( m_pChild && m_nExpandPriority >= 0 )
{
size_t nElements = m_pChild->countElements();
for( size_t i = 0; i < nElements; i++ )
{
sal_Int32 nCPrio = m_pChild->getExpandPriority( i );
if( nCPrio > nPrio )
nPrio = nCPrio;
}
}
return nPrio;
}
Size WindowArranger::Element::getOptimalSize( WindowSizeType i_eType ) const
{
Size aResult;
if( ! m_bHidden )
{
bool bVisible = false;
if( m_pElement && m_pElement->IsVisible() )
{
aResult = m_pElement->GetOptimalSize( i_eType );
bVisible = true;
}
else if( m_pChild && m_pChild->isVisible() )
{
aResult = m_pChild->getOptimalSize( i_eType );
bVisible = true;
}
if( bVisible )
{
if( aResult.Width() < m_aMinSize.Width() )
aResult.Width() = m_aMinSize.Width();
if( aResult.Height() < m_aMinSize.Height() )
aResult.Height() = m_aMinSize.Height();
aResult.Width() += getBorderValue( m_nLeftBorder ) + getBorderValue( m_nRightBorder );
aResult.Height() += getBorderValue( m_nTopBorder ) + getBorderValue( m_nBottomBorder );
}
}
return aResult;
}
void WindowArranger::Element::setPosSize( const Point& i_rPos, const Size& i_rSize )
{
Point aPoint( i_rPos );
Size aSize( i_rSize );
aPoint.X() += getBorderValue( m_nLeftBorder );
aPoint.Y() += getBorderValue( m_nTopBorder );
aSize.Width() -= getBorderValue( m_nLeftBorder ) + getBorderValue( m_nRightBorder );
aSize.Height() -= getBorderValue( m_nTopBorder ) + getBorderValue( m_nBottomBorder );
if( m_pElement )
m_pElement->SetPosSizePixel( aPoint, aSize );
else if( m_pChild )
m_pChild->setManagedArea( Rectangle( aPoint, aSize ) );
}
uno::Sequence< beans::PropertyValue > WindowArranger::getProperties() const
{
uno::Sequence< beans::PropertyValue > aRet( 3 );
aRet[0].Name = rtl::OUString( RTL_CONSTASCII_USTRINGPARAM( "OuterBorder" ) );
aRet[0].Value = uno::makeAny( sal_Int32( getBorderValue( m_nOuterBorder ) ) );
aRet[1].Name = rtl::OUString( RTL_CONSTASCII_USTRINGPARAM( "ManagedArea" ) );
awt::Rectangle aArea( m_aManagedArea.getX(), m_aManagedArea.getY(), m_aManagedArea.getWidth(), m_aManagedArea.getHeight() );
aRet[1].Value = uno::makeAny( aArea );
aRet[2].Name = rtl::OUString( RTL_CONSTASCII_USTRINGPARAM( "Visible" ) );
aRet[2].Value = uno::makeAny( sal_Bool( isVisible() ) );
return aRet;
}
void WindowArranger::setProperties( const uno::Sequence< beans::PropertyValue >& i_rProps )
{
const beans::PropertyValue* pProps = i_rProps.getConstArray();
bool bResize = false;
for( sal_Int32 i = 0; i < i_rProps.getLength(); i++ )
{
if( pProps[i].Name.equalsAscii( "OuterBorder" ) )
{
sal_Int32 nVal = 0;
if( pProps[i].Value >>= nVal )
{
if( getBorderValue( m_nOuterBorder ) != nVal )
{
m_nOuterBorder = nVal;
bResize = true;
}
}
}
else if( pProps[i].Name.equalsAscii( "ManagedArea" ) )
{
awt::Rectangle aArea( 0, 0, 0, 0 );
if( pProps[i].Value >>= aArea )
{
m_aManagedArea.setX( aArea.X );
m_aManagedArea.setY( aArea.Y );
m_aManagedArea.setWidth( aArea.Width );
m_aManagedArea.setHeight( aArea.Height );
bResize = true;
}
}
else if( pProps[i].Name.equalsAscii( "Visible" ) )
{
sal_Bool bVal = sal_False;
if( pProps[i].Value >>= bVal )
{
show( bVal, false );
bResize = true;
}
}
}
if( bResize )
resize();
}
// ----------------------------------------
// vcl::RowOrColumn
//-----------------------------------------
RowOrColumn::~RowOrColumn()
{
for( std::vector< WindowArranger::Element >::iterator it = m_aElements.begin();
it != m_aElements.end(); ++it )
{
it->deleteChild();
}
}
Size RowOrColumn::getOptimalSize( WindowSizeType i_eType ) const
{
Size aRet( 0, 0 );
long nDistance = getBorderValue( m_nBorderWidth );
for( std::vector< WindowArranger::Element >::const_iterator it = m_aElements.begin();
it != m_aElements.end(); ++it )
{
if( it->isVisible() )
{
// get the size of type of the managed element
Size aElementSize( it->getOptimalSize( i_eType ) );
if( m_bColumn )
{
// add the distance between elements
aRet.Height() += nDistance;
// check if the width needs adjustment
if( aRet.Width() < aElementSize.Width() )
aRet.Width() = aElementSize.Width();
aRet.Height() += aElementSize.Height();
}
else
{
// add the distance between elements
aRet.Width() += nDistance;
// check if the height needs adjustment
if( aRet.Height() < aElementSize.Height() )
aRet.Height() = aElementSize.Height();
aRet.Width() += aElementSize.Width();
}
}
}
if( aRet.Width() != 0 || aRet.Height() != 0 )
{
// subtract the border for the first element
if( m_bColumn )
aRet.Height() -= nDistance;
else
aRet.Width() -= nDistance;
// add the outer border
long nOuterBorder = getBorderValue( m_nOuterBorder );
aRet.Width() += 2*nOuterBorder;
aRet.Height() += 2*nOuterBorder;
}
return aRet;
}
void RowOrColumn::distributeRowWidth( std::vector<Size>& io_rSizes, long /*i_nUsedWidth*/, long i_nExtraWidth )
{
if( ! io_rSizes.empty() && io_rSizes.size() == m_aElements.size() )
{
// find all elements with the highest expand priority
size_t nElements = m_aElements.size();
std::vector< size_t > aIndices;
sal_Int32 nHighPrio = 0;
for( size_t i = 0; i < nElements; i++ )
{
if( m_aElements[ i ].isVisible() )
{
sal_Int32 nCurPrio = m_aElements[ i ].getExpandPriority();
if( nCurPrio > nHighPrio )
{
aIndices.clear();
nHighPrio = nCurPrio;
}
if( nCurPrio == nHighPrio )
aIndices.push_back( i );
}
}
// distribute extra space evenly among collected elements
nElements = aIndices.size();
if( nElements > 0 )
{
long nDelta = i_nExtraWidth / nElements;
for( size_t i = 0; i < nElements; i++ )
{
io_rSizes[ aIndices[i] ].Width() += nDelta;
i_nExtraWidth -= nDelta;
}
// add the last pixels to the last row element
if( i_nExtraWidth > 0 && nElements > 0 )
io_rSizes[aIndices.back()].Width() += i_nExtraWidth;
}
}
}
void RowOrColumn::distributeColumnHeight( std::vector<Size>& io_rSizes, long /*i_nUsedHeight*/, long i_nExtraHeight )
{
if( ! io_rSizes.empty() && io_rSizes.size() == m_aElements.size() )
{
// find all elements with the highest expand priority
size_t nElements = m_aElements.size();
std::vector< size_t > aIndices;
sal_Int32 nHighPrio = 3;
for( size_t i = 0; i < nElements; i++ )
{
if( m_aElements[ i ].isVisible() )
{
sal_Int32 nCurPrio = m_aElements[ i ].getExpandPriority();
if( nCurPrio > nHighPrio )
{
aIndices.clear();
nHighPrio = nCurPrio;
}
if( nCurPrio == nHighPrio )
aIndices.push_back( i );
}
}
// distribute extra space evenly among collected elements
nElements = aIndices.size();
if( nElements > 0 )
{
long nDelta = i_nExtraHeight / nElements;
for( size_t i = 0; i < nElements; i++ )
{
io_rSizes[ aIndices[i] ].Height() += nDelta;
i_nExtraHeight -= nDelta;
}
// add the last pixels to the last row element
if( i_nExtraHeight > 0 && nElements > 0 )
io_rSizes[aIndices.back()].Height() += i_nExtraHeight;
}
}
}
void RowOrColumn::resize()
{
// check if we can get optimal size, else fallback to minimal size
Size aOptSize( getOptimalSize( WINDOWSIZE_PREFERRED ) );
WindowSizeType eType = WINDOWSIZE_PREFERRED;
if( m_bColumn )
{
if( aOptSize.Height() > m_aManagedArea.GetHeight() )
eType = WINDOWSIZE_MINIMUM;
}
else
{
if( aOptSize.Width() > m_aManagedArea.GetWidth() )
eType = WINDOWSIZE_MINIMUM;
}
size_t nElements = m_aElements.size();
// get all element sizes for sizing
std::vector<Size> aElementSizes( nElements );
long nDistance = getBorderValue( m_nBorderWidth );
long nOuterBorder = getBorderValue( m_nOuterBorder );
long nUsedWidth = 2*nOuterBorder - (nElements ? nDistance : 0);
for( size_t i = 0; i < nElements; i++ )
{
if( m_aElements[i].isVisible() )
{
aElementSizes[i] = m_aElements[i].getOptimalSize( eType );
if( m_bColumn )
{
aElementSizes[i].Width() = m_aManagedArea.GetWidth() - 2 * nOuterBorder;
nUsedWidth += aElementSizes[i].Height() + nDistance;
}
else
{
aElementSizes[i].Height() = m_aManagedArea.GetHeight() - 2 * nOuterBorder;
nUsedWidth += aElementSizes[i].Width() + nDistance;
}
}
}
long nExtraWidth = (m_bColumn ? m_aManagedArea.GetHeight() : m_aManagedArea.GetWidth()) - nUsedWidth;
if( nExtraWidth > 0 )
{
if( m_bColumn )
distributeColumnHeight( aElementSizes, nUsedWidth, nExtraWidth );
else
distributeRowWidth( aElementSizes, nUsedWidth, nExtraWidth );
}
// get starting position
Point aElementPos( m_aManagedArea.TopLeft() );
// outer border
aElementPos.X() += nOuterBorder;
aElementPos.Y() += nOuterBorder;
// position managed windows
for( size_t i = 0; i < nElements; i++ )
{
// get the size of type of the managed element
if( m_aElements[i].isVisible() )
{
m_aElements[i].setPosSize( aElementPos, aElementSizes[i] );
if( m_bColumn )
aElementPos.Y() += nDistance + aElementSizes[i].Height();
else
aElementPos.X() += nDistance + aElementSizes[i].Width();
}
}
}
size_t RowOrColumn::addWindow( Window* i_pWindow, sal_Int32 i_nExpandPrio, const Size& i_rMinSize, size_t i_nIndex )
{
size_t nIndex = i_nIndex;
if( i_nIndex >= m_aElements.size() )
{
nIndex = m_aElements.size();
m_aElements.push_back( WindowArranger::Element( i_pWindow, boost::shared_ptr<WindowArranger>(), i_nExpandPrio, i_rMinSize ) );
}
else
{
std::vector< WindowArranger::Element >::iterator it = m_aElements.begin();
while( i_nIndex-- )
++it;
m_aElements.insert( it, WindowArranger::Element( i_pWindow, boost::shared_ptr<WindowArranger>(), i_nExpandPrio, i_rMinSize ) );
}
return nIndex;
}
size_t RowOrColumn::addChild( boost::shared_ptr<WindowArranger> const & i_pChild, sal_Int32 i_nExpandPrio, size_t i_nIndex )
{
size_t nIndex = i_nIndex;
if( i_nIndex >= m_aElements.size() )
{
nIndex = m_aElements.size();
m_aElements.push_back( WindowArranger::Element( NULL, i_pChild, i_nExpandPrio ) );
}
else
{
std::vector< WindowArranger::Element >::iterator it = m_aElements.begin();
while( i_nIndex-- )
++it;
m_aElements.insert( it, WindowArranger::Element( NULL, i_pChild, i_nExpandPrio ) );
}
return nIndex;
}
void RowOrColumn::remove( Window* i_pWindow )
{
if( i_pWindow )
{
for( std::vector< WindowArranger::Element >::iterator it = m_aElements.begin();
it != m_aElements.end(); ++it )
{
if( it->m_pElement == i_pWindow )
{
m_aElements.erase( it );
return;
}
}
}
}
void RowOrColumn::remove( boost::shared_ptr<WindowArranger> const & i_pChild )
{
if( i_pChild )
{
for( std::vector< WindowArranger::Element >::iterator it = m_aElements.begin();
it != m_aElements.end(); ++it )
{
if( it->m_pChild == i_pChild )
{
m_aElements.erase( it );
return;
}
}
}
}
// ----------------------------------------
// vcl::LabeledElement
//-----------------------------------------
LabeledElement::~LabeledElement()
{
m_aLabel.deleteChild();
m_aElement.deleteChild();
}
Size LabeledElement::getOptimalSize( WindowSizeType i_eType ) const
{
Size aRet( m_aLabel.getOptimalSize( WINDOWSIZE_MINIMUM ) );
if( aRet.Width() != 0 )
{
if( m_nLabelColumnWidth != 0 )
aRet.Width() = m_nLabelColumnWidth;
else
aRet.Width() += getBorderValue( m_nDistance );
}
Size aElementSize( m_aElement.getOptimalSize( i_eType ) );
aRet.Width() += aElementSize.Width();
if( aElementSize.Height() > aRet.Height() )
aRet.Height() = aElementSize.Height();
if( aRet.Height() != 0 )
aRet.Height() += 2 * getBorderValue( m_nOuterBorder );
return aRet;
}
void LabeledElement::resize()
{
Size aLabelSize( m_aLabel.getOptimalSize( WINDOWSIZE_MINIMUM ) );
Size aElementSize( m_aElement.getOptimalSize( WINDOWSIZE_PREFERRED ) );
long nDistance = getBorderValue( m_nDistance );
long nOuterBorder = getBorderValue( m_nOuterBorder );
if( nDistance + aLabelSize.Width() + aElementSize.Width() > m_aManagedArea.GetWidth() )
aElementSize = m_aElement.getOptimalSize( WINDOWSIZE_MINIMUM );
// align label and element vertically in LabeledElement
long nYOff = (m_aManagedArea.GetHeight() - 2*nOuterBorder - aLabelSize.Height()) / 2;
Point aPos( m_aManagedArea.Left(),
m_aManagedArea.Top() + nOuterBorder + nYOff );
Size aSize( aLabelSize );
if( m_nLabelColumnWidth != 0 )
aSize.Width() = m_nLabelColumnWidth;
m_aLabel.setPosSize( aPos, aSize );
aPos.X() += aSize.Width() + nDistance;
nYOff = (m_aManagedArea.GetHeight() - 2*nOuterBorder - aElementSize.Height()) / 2;
aPos.Y() = m_aManagedArea.Top() + nOuterBorder + nYOff;
aSize.Width() = aElementSize.Width();
aSize.Height() = m_aManagedArea.GetHeight() - 2*nOuterBorder;
// label style
// 0: position left and right
// 1: keep the element close to label and grow it
// 2: keep the element close and don't grow it
if( m_nLabelStyle == 0)
{
if( aPos.X() + aSize.Width() < m_aManagedArea.Right() )
aPos.X() = m_aManagedArea.Right() - aSize.Width();
}
else if( m_nLabelStyle == 1 )
{
if( aPos.X() + aSize.Width() < m_aManagedArea.Right() )
aSize.Width() = m_aManagedArea.Right() - aPos.X();
}
m_aElement.setPosSize( aPos, aSize );
}
void LabeledElement::setLabel( Window* i_pLabel )
{
m_aLabel.m_pElement = i_pLabel;
m_aLabel.m_pChild.reset();
}
void LabeledElement::setLabel( boost::shared_ptr<WindowArranger> const & i_pLabel )
{
m_aLabel.m_pElement = NULL;
m_aLabel.m_pChild = i_pLabel;
}
void LabeledElement::setElement( Window* i_pElement )
{
m_aElement.m_pElement = i_pElement;
m_aElement.m_pChild.reset();
}
void LabeledElement::setElement( boost::shared_ptr<WindowArranger> const & i_pElement )
{
m_aElement.m_pElement = NULL;
m_aElement.m_pChild = i_pElement;
}
// ----------------------------------------
// vcl::LabelColumn
//-----------------------------------------
LabelColumn::~LabelColumn()
{
}
long LabelColumn::getLabelWidth() const
{
long nWidth = 0;
size_t nEle = countElements();
for( size_t i = 0; i < nEle; i++ )
{
const Element* pEle = getConstElement( i );
if( pEle && pEle->m_pChild.get() )
{
const LabeledElement* pLabel = dynamic_cast< const LabeledElement* >(pEle->m_pChild.get());
if( pLabel )
{
Window* pLW = pLabel->getWindow( 0 );
if( pLW )
{
Size aLabSize( pLW->GetOptimalSize( WINDOWSIZE_MINIMUM ) );
long nLB = 0;
pLabel->getBorders(0, &nLB);
aLabSize.Width() += getBorderValue( nLB );
if( aLabSize.Width() > nWidth )
nWidth = aLabSize.Width();
}
}
}
}
return nWidth + getBorderValue( getBorderWidth() );
}
Size LabelColumn::getOptimalSize( WindowSizeType i_eType ) const
{
long nWidth = getLabelWidth();
long nOuterBorder = getBorderValue( m_nOuterBorder );
Size aColumnSize;
// every child is a LabeledElement
size_t nEle = countElements();
for( size_t i = 0; i < nEle; i++ )
{
Size aElementSize;
const Element* pEle = getConstElement( i );
if( pEle && pEle->m_pChild.get() )
{
const LabeledElement* pLabel = dynamic_cast< const LabeledElement* >(pEle->m_pChild.get());
if( pLabel ) // we have a label
{
aElementSize = pLabel->getLabelSize( WINDOWSIZE_MINIMUM );
if( aElementSize.Width() )
aElementSize.Width() = nWidth;
Size aSize( pLabel->getElementSize( i_eType ) );
aElementSize.Width() += aSize.Width();
if( aSize.Height() > aElementSize.Height() )
aElementSize.Height() = aSize.Height();
}
else // a non label, just treat it as a row
{
aElementSize = pEle->getOptimalSize( i_eType );
}
}
else if( pEle && pEle->m_pElement ) // a general window, treat is as a row
{
aElementSize = pEle->getOptimalSize( i_eType );
}
if( aElementSize.Width() )
{
aElementSize.Width() += 2*nOuterBorder;
if( aElementSize.Width() > aColumnSize.Width() )
aColumnSize.Width() = aElementSize.Width();
}
if( aElementSize.Height() )
{
aColumnSize.Height() += getBorderValue( getBorderWidth() ) + aElementSize.Height();
}
}
if( nEle > 0 && aColumnSize.Height() )
{
aColumnSize.Height() -= getBorderValue( getBorderWidth() ); // for the first element
aColumnSize.Height() += 2*nOuterBorder;
}
return aColumnSize;
}
void LabelColumn::resize()
{
long nWidth = getLabelWidth();
size_t nEle = countElements();
for( size_t i = 0; i < nEle; i++ )
{
Element* pEle = getElement( i );
if( pEle && pEle->m_pChild.get() )
{
LabeledElement* pLabel = dynamic_cast< LabeledElement* >(pEle->m_pChild.get());
if( pLabel )
pLabel->setLabelColumnWidth( nWidth );
}
}
RowOrColumn::resize();
}
size_t LabelColumn::addRow( Window* i_pLabel, boost::shared_ptr<WindowArranger> const& i_rElement, long i_nIndent )
{
boost::shared_ptr< LabeledElement > xLabel( new LabeledElement( this, 1 ) );
xLabel->setLabel( i_pLabel );
xLabel->setBorders( 0, i_nIndent, 0, 0, 0 );
xLabel->setElement( i_rElement );
size_t nIndex = addChild( xLabel );
resize();
return nIndex;
}
size_t LabelColumn::addRow( Window* i_pLabel, Window* i_pElement, long i_nIndent, const Size& i_rElementMinSize )
{
boost::shared_ptr< LabeledElement > xLabel( new LabeledElement( this, 1 ) );
xLabel->setLabel( i_pLabel );
xLabel->setBorders( 0, i_nIndent, 0, 0, 0 );
xLabel->setElement( i_pElement );
xLabel->setMinimumSize( 1, i_rElementMinSize );
size_t nIndex = addChild( xLabel );
resize();
return nIndex;
}
// ----------------------------------------
// vcl::Indenter
//-----------------------------------------
Indenter::~Indenter()
{
m_aElement.deleteChild();
}
Size Indenter::getOptimalSize( WindowSizeType i_eType ) const
{
Size aSize( m_aElement.getOptimalSize( i_eType ) );
long nOuterBorder = getBorderValue( m_nOuterBorder );
long nIndent = getBorderValue( m_nIndent );
aSize.Width() += 2*nOuterBorder + nIndent;
aSize.Height() += 2*nOuterBorder;
return aSize;
}
void Indenter::resize()
{
long nOuterBorder = getBorderValue( m_nOuterBorder );
long nIndent = getBorderValue( m_nIndent );
Point aPt( m_aManagedArea.TopLeft() );
aPt.X() += nOuterBorder + nIndent;
aPt.Y() += nOuterBorder;
Size aSz( m_aManagedArea.GetSize() );
aSz.Width() -= 2*nOuterBorder + nIndent;
aSz.Height() -= 2*nOuterBorder;
m_aElement.setPosSize( aPt, aSz );
}
void Indenter::setWindow( Window* i_pWindow, sal_Int32 i_nExpandPrio )
{
OSL_VERIFY( (m_aElement.m_pElement == 0 && m_aElement.m_pChild == 0) || i_pWindow == 0 );
OSL_VERIFY( i_pWindow == 0 || i_pWindow->GetParent() == m_pParentWindow );
m_aElement.m_pElement = i_pWindow;
m_aElement.m_nExpandPriority = i_nExpandPrio;
}
void Indenter::setChild( boost::shared_ptr<WindowArranger> const & i_pChild, sal_Int32 i_nExpandPrio )
{
OSL_VERIFY( (m_aElement.m_pElement == 0 && m_aElement.m_pChild == 0 ) || i_pChild == 0 );
m_aElement.m_pChild = i_pChild;
m_aElement.m_nExpandPriority = i_nExpandPrio;
}
// ----------------------------------------
// vcl::MatrixArranger
//-----------------------------------------
MatrixArranger::~MatrixArranger()
{
}
Size MatrixArranger::getOptimalSize( WindowSizeType i_eType,
std::vector<long>& o_rColumnWidths, std::vector<long>& o_rRowHeights,
std::vector<sal_Int32>& o_rColumnPrio, std::vector<sal_Int32>& o_rRowPrio
) const
{
long nOuterBorder = getBorderValue( m_nOuterBorder );
Size aMatrixSize( 2*nOuterBorder, 2*nOuterBorder );
// first find out the current number of rows and columns
sal_uInt32 nRows = 0, nColumns = 0;
for( std::vector< MatrixElement >::const_iterator it = m_aElements.begin();
it != m_aElements.end(); ++it )
{
if( it->m_nX >= nColumns )
nColumns = it->m_nX+1;
if( it->m_nY >= nRows )
nRows = it->m_nY+1;
}
// now allocate row and column depth vectors
o_rColumnWidths = std::vector< long >( nColumns, 0 );
o_rRowHeights = std::vector< long >( nRows, 0 );
o_rColumnPrio = std::vector< sal_Int32 >( nColumns, 0 );
o_rRowPrio = std::vector< sal_Int32 >( nRows, 0 );
// get sizes an allocate them into rows/columns
for( std::vector< MatrixElement >::const_iterator it = m_aElements.begin();
it != m_aElements.end(); ++it )
{
Size aSize( it->getOptimalSize( i_eType ) );
if( aSize.Width() > o_rColumnWidths[ it->m_nX ] )
o_rColumnWidths[ it->m_nX ] = aSize.Width();
if( aSize.Height() > o_rRowHeights[ it->m_nY ] )
o_rRowHeights[ it->m_nY ] = aSize.Height();
if( it->m_nExpandPriority > o_rColumnPrio[ it->m_nX ] )
o_rColumnPrio[ it->m_nX ] = it->m_nExpandPriority;
if( it->m_nExpandPriority > o_rRowPrio[ it->m_nY ] )
o_rRowPrio[ it->m_nY ] = it->m_nExpandPriority;
}
// add up sizes
long nDistanceX = getBorderValue( m_nBorderX );
long nDistanceY = getBorderValue( m_nBorderY );
for( sal_uInt32 i = 0; i < nColumns; i++ )
aMatrixSize.Width() += o_rColumnWidths[i] + nDistanceX;
if( nColumns > 0 )
aMatrixSize.Width() -= nDistanceX;
for( sal_uInt32 i = 0; i < nRows; i++ )
aMatrixSize.Height() += o_rRowHeights[i] + nDistanceY;
if( nRows > 0 )
aMatrixSize.Height() -= nDistanceY;
return aMatrixSize;
}
Size MatrixArranger::getOptimalSize( WindowSizeType i_eType ) const
{
std::vector<long> aColumnWidths, aRowHeights;
std::vector<sal_Int32> aColumnPrio, aRowPrio;
return getOptimalSize( i_eType, aColumnWidths, aRowHeights, aColumnPrio, aRowPrio );
}
void MatrixArranger::distributeExtraSize( std::vector<long>& io_rSizes, const std::vector<sal_Int32>& i_rPrios, long i_nExtraWidth )
{
if( ! io_rSizes.empty() && io_rSizes.size() == i_rPrios.size() ) // sanity check
{
// find all elements with the highest expand priority
size_t nElements = io_rSizes.size();
std::vector< size_t > aIndices;
sal_Int32 nHighPrio = 0;
for( size_t i = 0; i < nElements; i++ )
{
sal_Int32 nCurPrio = i_rPrios[ i ];
if( nCurPrio > nHighPrio )
{
aIndices.clear();
nHighPrio = nCurPrio;
}
if( nCurPrio == nHighPrio )
aIndices.push_back( i );
}
// distribute extra space evenly among collected elements
nElements = aIndices.size();
if( nElements > 0 )
{
long nDelta = i_nExtraWidth / nElements;
for( size_t i = 0; i < nElements; i++ )
{
io_rSizes[ aIndices[i] ] += nDelta;
i_nExtraWidth -= nDelta;
}
// add the last pixels to the last row element
if( i_nExtraWidth > 0 && nElements > 0 )
io_rSizes[aIndices.back()] += i_nExtraWidth;
}
}
}
void MatrixArranger::resize()
{
// assure that we have at least one row and column
if( m_aElements.empty() )
return;
// check if we can get optimal size, else fallback to minimal size
std::vector<long> aColumnWidths, aRowHeights;
std::vector<sal_Int32> aColumnPrio, aRowPrio;
Size aOptSize( getOptimalSize( WINDOWSIZE_PREFERRED, aColumnWidths, aRowHeights, aColumnPrio, aRowPrio ) );
if( aOptSize.Height() > m_aManagedArea.GetHeight() ||
aOptSize.Width() > m_aManagedArea.GetWidth() )
{
std::vector<long> aMinColumnWidths, aMinRowHeights;
getOptimalSize( WINDOWSIZE_MINIMUM, aMinColumnWidths, aMinRowHeights, aColumnPrio, aRowPrio );
if( aOptSize.Height() > m_aManagedArea.GetHeight() )
aRowHeights = aMinRowHeights;
if( aOptSize.Width() > m_aManagedArea.GetWidth() )
aColumnWidths = aMinColumnWidths;
}
// distribute extra space available
long nExtraSize = m_aManagedArea.GetWidth();
for( size_t i = 0; i < aColumnWidths.size(); ++i )
nExtraSize -= aColumnWidths[i] + m_nBorderX;
if( nExtraSize > 0 )
distributeExtraSize( aColumnWidths, aColumnPrio, nExtraSize );
nExtraSize = m_aManagedArea.GetHeight();
for( size_t i = 0; i < aRowHeights.size(); ++i )
nExtraSize -= aRowHeights[i] + m_nBorderY;
if( nExtraSize > 0 )
distributeExtraSize( aRowHeights, aRowPrio, nExtraSize );
// prepare offsets
long nDistanceX = getBorderValue( m_nBorderX );
long nDistanceY = getBorderValue( m_nBorderY );
long nOuterBorder = getBorderValue( m_nOuterBorder );
std::vector<long> aColumnX( aColumnWidths.size() );
aColumnX[0] = m_aManagedArea.Left() + nOuterBorder;
for( size_t i = 1; i < aColumnX.size(); i++ )
aColumnX[i] = aColumnX[i-1] + aColumnWidths[i-1] + nDistanceX;
std::vector<long> aRowY( aRowHeights.size() );
aRowY[0] = m_aManagedArea.Top() + nOuterBorder;
for( size_t i = 1; i < aRowY.size(); i++ )
aRowY[i] = aRowY[i-1] + aRowHeights[i-1] + nDistanceY;
// now iterate over the elements and assign their positions
for( std::vector< MatrixElement >::iterator it = m_aElements.begin();
it != m_aElements.end(); ++it )
{
Point aCellPos( aColumnX[it->m_nX], aRowY[it->m_nY] );
Size aCellSize( aColumnWidths[it->m_nX], aRowHeights[it->m_nY] );
it->setPosSize( aCellPos, aCellSize );
}
}
size_t MatrixArranger::addWindow( Window* i_pWindow, sal_uInt32 i_nX, sal_uInt32 i_nY, sal_Int32 i_nExpandPrio, const Size& i_rMinSize )
{
sal_uInt64 nMapValue = getMap( i_nX, i_nY );
std::map< sal_uInt64, size_t >::const_iterator it = m_aMatrixMap.find( nMapValue );
size_t nIndex = 0;
if( it == m_aMatrixMap.end() )
{
m_aMatrixMap[ nMapValue ] = nIndex = m_aElements.size();
m_aElements.push_back( MatrixElement( i_pWindow, i_nX, i_nY, boost::shared_ptr<WindowArranger>(), i_nExpandPrio, i_rMinSize ) );
}
else
{
MatrixElement& rEle( m_aElements[ it->second ] );
rEle.m_pElement = i_pWindow;
rEle.m_pChild.reset();
rEle.m_nExpandPriority = i_nExpandPrio;
rEle.m_aMinSize = i_rMinSize;
rEle.m_nX = i_nX;
rEle.m_nY = i_nY;
nIndex = it->second;
}
return nIndex;
}
void MatrixArranger::remove( Window* i_pWindow )
{
if( i_pWindow )
{
for( std::vector< MatrixElement >::iterator it = m_aElements.begin();
it != m_aElements.end(); ++it )
{
if( it->m_pElement == i_pWindow )
{
m_aMatrixMap.erase( getMap( it->m_nX, it->m_nY ) );
m_aElements.erase( it );
return;
}
}
}
}
size_t MatrixArranger::addChild( boost::shared_ptr<WindowArranger> const &i_pChild, sal_uInt32 i_nX, sal_uInt32 i_nY, sal_Int32 i_nExpandPrio )
{
sal_uInt64 nMapValue = getMap( i_nX, i_nY );
std::map< sal_uInt64, size_t >::const_iterator it = m_aMatrixMap.find( nMapValue );
size_t nIndex = 0;
if( it == m_aMatrixMap.end() )
{
m_aMatrixMap[ nMapValue ] = nIndex = m_aElements.size();
m_aElements.push_back( MatrixElement( NULL, i_nX, i_nY, i_pChild, i_nExpandPrio ) );
}
else
{
MatrixElement& rEle( m_aElements[ it->second ] );
rEle.m_pElement = 0;
rEle.m_pChild = i_pChild;
rEle.m_nExpandPriority = i_nExpandPrio;
rEle.m_nX = i_nX;
rEle.m_nY = i_nY;
nIndex = it->second;
}
return nIndex;
}
void MatrixArranger::remove( boost::shared_ptr<WindowArranger> const &i_pChild )
{
if( i_pChild )
{
for( std::vector< MatrixElement >::iterator it = m_aElements.begin();
it != m_aElements.end(); ++it )
{
if( it->m_pChild == i_pChild )
{
m_aMatrixMap.erase( getMap( it->m_nX, it->m_nY ) );
m_aElements.erase( it );
return;
}
}
}
}