blob: 50c5f230424146d689cb78d94445dac97b93b7a1 [file] [log] [blame]
/**************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_vcl.hxx"
#include <com/sun/star/util/Endianness.hpp>
#include <com/sun/star/rendering/ColorComponentTag.hpp>
#include <com/sun/star/rendering/ColorSpaceType.hpp>
#include <com/sun/star/rendering/RenderingIntent.hpp>
#include <rtl/instance.hxx>
#include <vos/mutex.hxx>
#include <tools/diagnose_ex.h>
#include <canvasbitmap.hxx>
#include <vcl/canvastools.hxx>
#include <vcl/bmpacc.hxx>
#include <vcl/svapp.hxx>
#include <algorithm>
using namespace ::vcl::unotools;
using namespace ::com::sun::star;
namespace
{
// TODO(Q3): move to o3tl bithacks or somesuch. A similar method is in canvas/canvastools.hxx
// Good ole HAKMEM tradition. Calc number of 1 bits in 32bit word,
// unrolled loop. See e.g. Hackers Delight, p. 66
inline sal_Int32 bitcount( sal_uInt32 val )
{
val = val - ((val >> 1) & 0x55555555);
val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
val = (val + (val >> 4)) & 0x0F0F0F0F;
val = val + (val >> 8);
val = val + (val >> 16);
return sal_Int32(val & 0x0000003F);
}
}
void VclCanvasBitmap::setComponentInfo( sal_uLong redShift, sal_uLong greenShift, sal_uLong blueShift )
{
// sort channels in increasing order of appearance in the pixel
// (starting with the least significant bits)
sal_Int8 redPos(0);
sal_Int8 greenPos(1);
sal_Int8 bluePos(2);
if( redShift > greenShift )
{
std::swap(redPos,greenPos);
if( redShift > blueShift )
{
std::swap(redPos,bluePos);
if( greenShift > blueShift )
std::swap(greenPos,bluePos);
}
}
else
{
if( greenShift > blueShift )
{
std::swap(greenPos,bluePos);
if( redShift > blueShift )
std::swap(redPos,bluePos);
}
}
m_aComponentTags.realloc(3);
sal_Int8* pTags = m_aComponentTags.getArray();
pTags[redPos] = rendering::ColorComponentTag::RGB_RED;
pTags[greenPos] = rendering::ColorComponentTag::RGB_GREEN;
pTags[bluePos] = rendering::ColorComponentTag::RGB_BLUE;
m_aComponentBitCounts.realloc(3);
sal_Int32* pCounts = m_aComponentBitCounts.getArray();
pCounts[redPos] = bitcount(sal::static_int_cast<sal_uInt32>(redShift));
pCounts[greenPos] = bitcount(sal::static_int_cast<sal_uInt32>(greenShift));
pCounts[bluePos] = bitcount(sal::static_int_cast<sal_uInt32>(blueShift));
}
VclCanvasBitmap::VclCanvasBitmap( const BitmapEx& rBitmap ) :
m_aBmpEx( rBitmap ),
m_aBitmap( rBitmap.GetBitmap() ),
m_aAlpha(),
m_pBmpAcc( m_aBitmap.AcquireReadAccess() ),
m_pAlphaAcc( NULL ),
m_aComponentTags(),
m_aComponentBitCounts(),
m_aLayout(),
m_nBitsPerInputPixel(0),
m_nBitsPerOutputPixel(0),
m_nRedIndex(-1),
m_nGreenIndex(-1),
m_nBlueIndex(-1),
m_nAlphaIndex(-1),
m_nIndexIndex(-1),
m_nEndianness(0),
m_bSwap(false),
m_bPalette(false)
{
if( m_aBmpEx.IsTransparent() )
{
m_aAlpha = m_aBmpEx.IsAlpha() ? m_aBmpEx.GetAlpha().GetBitmap() : m_aBmpEx.GetMask();
m_pAlphaAcc = m_aAlpha.AcquireReadAccess();
}
m_aLayout.ScanLines = 0;
m_aLayout.ScanLineBytes = 0;
m_aLayout.ScanLineStride = 0;
m_aLayout.PlaneStride = 0;
m_aLayout.ColorSpace.clear();
m_aLayout.Palette.clear();
m_aLayout.IsMsbFirst = sal_False;
if( m_pBmpAcc )
{
m_aLayout.ScanLines = m_pBmpAcc->Height();
m_aLayout.ScanLineBytes = (m_pBmpAcc->GetBitCount()*m_pBmpAcc->Width() + 7) / 8;
m_aLayout.ScanLineStride = m_pBmpAcc->GetScanlineSize();
m_aLayout.PlaneStride = 0;
switch( m_pBmpAcc->GetScanlineFormat() )
{
case BMP_FORMAT_1BIT_MSB_PAL:
m_bPalette = true;
m_nBitsPerInputPixel = 1;
m_nEndianness = util::Endianness::LITTLE; // doesn't matter
m_aLayout.IsMsbFirst = sal_True;
break;
case BMP_FORMAT_1BIT_LSB_PAL:
m_bPalette = true;
m_nBitsPerInputPixel = 1;
m_nEndianness = util::Endianness::LITTLE; // doesn't matter
m_aLayout.IsMsbFirst = sal_False;
break;
case BMP_FORMAT_4BIT_MSN_PAL:
m_bPalette = true;
m_nBitsPerInputPixel = 4;
m_nEndianness = util::Endianness::LITTLE; // doesn't matter
m_aLayout.IsMsbFirst = sal_True;
break;
case BMP_FORMAT_4BIT_LSN_PAL:
m_bPalette = true;
m_nBitsPerInputPixel = 4;
m_nEndianness = util::Endianness::LITTLE; // doesn't matter
m_aLayout.IsMsbFirst = sal_False;
break;
case BMP_FORMAT_8BIT_PAL:
m_bPalette = true;
m_nBitsPerInputPixel = 8;
m_nEndianness = util::Endianness::LITTLE; // doesn't matter
m_aLayout.IsMsbFirst = sal_False; // doesn't matter
break;
case BMP_FORMAT_8BIT_TC_MASK:
m_bPalette = false;
m_nBitsPerInputPixel = 8;
m_nEndianness = util::Endianness::LITTLE; // doesn't matter
m_aLayout.IsMsbFirst = sal_False; // doesn't matter
setComponentInfo( m_pBmpAcc->GetColorMask().GetRedMask(),
m_pBmpAcc->GetColorMask().GetGreenMask(),
m_pBmpAcc->GetColorMask().GetBlueMask() );
break;
case BMP_FORMAT_16BIT_TC_MSB_MASK:
m_bPalette = false;
m_nBitsPerInputPixel = 16;
m_nEndianness = util::Endianness::BIG;
m_aLayout.IsMsbFirst = sal_False; // doesn't matter
setComponentInfo( m_pBmpAcc->GetColorMask().GetRedMask(),
m_pBmpAcc->GetColorMask().GetGreenMask(),
m_pBmpAcc->GetColorMask().GetBlueMask() );
break;
case BMP_FORMAT_16BIT_TC_LSB_MASK:
m_bPalette = false;
m_nBitsPerInputPixel = 16;
m_nEndianness = util::Endianness::LITTLE;
m_aLayout.IsMsbFirst = sal_False; // doesn't matter
setComponentInfo( m_pBmpAcc->GetColorMask().GetRedMask(),
m_pBmpAcc->GetColorMask().GetGreenMask(),
m_pBmpAcc->GetColorMask().GetBlueMask() );
break;
case BMP_FORMAT_24BIT_TC_BGR:
m_bPalette = false;
m_nBitsPerInputPixel = 24;
m_nEndianness = util::Endianness::LITTLE;
m_aLayout.IsMsbFirst = sal_False; // doesn't matter
setComponentInfo( 0xff0000LL,
0x00ff00LL,
0x0000ffLL );
break;
case BMP_FORMAT_24BIT_TC_RGB:
m_bPalette = false;
m_nBitsPerInputPixel = 24;
m_nEndianness = util::Endianness::LITTLE;
m_aLayout.IsMsbFirst = sal_False; // doesn't matter
setComponentInfo( 0x0000ffLL,
0x00ff00LL,
0xff0000LL );
break;
case BMP_FORMAT_24BIT_TC_MASK:
m_bPalette = false;
m_nBitsPerInputPixel = 24;
m_nEndianness = util::Endianness::LITTLE;
m_aLayout.IsMsbFirst = sal_False; // doesn't matter
setComponentInfo( m_pBmpAcc->GetColorMask().GetRedMask(),
m_pBmpAcc->GetColorMask().GetGreenMask(),
m_pBmpAcc->GetColorMask().GetBlueMask() );
break;
case BMP_FORMAT_32BIT_TC_ABGR:
{
m_bPalette = false;
m_nBitsPerInputPixel = 32;
m_nEndianness = util::Endianness::LITTLE;
m_aLayout.IsMsbFirst = sal_False; // doesn't matter
m_aComponentTags.realloc(4);
sal_Int8* pTags = m_aComponentTags.getArray();
pTags[0] = rendering::ColorComponentTag::ALPHA;
pTags[1] = rendering::ColorComponentTag::RGB_BLUE;
pTags[2] = rendering::ColorComponentTag::RGB_GREEN;
pTags[3] = rendering::ColorComponentTag::RGB_RED;
m_aComponentBitCounts.realloc(4);
sal_Int32* pCounts = m_aComponentBitCounts.getArray();
pCounts[0] = 8;
pCounts[1] = 8;
pCounts[2] = 8;
pCounts[3] = 8;
m_nRedIndex = 3;
m_nGreenIndex = 2;
m_nBlueIndex = 1;
m_nAlphaIndex = 0;
}
break;
case BMP_FORMAT_32BIT_TC_ARGB:
{
m_bPalette = false;
m_nBitsPerInputPixel = 32;
m_nEndianness = util::Endianness::LITTLE;
m_aLayout.IsMsbFirst = sal_False; // doesn't matter
m_aComponentTags.realloc(4);
sal_Int8* pTags = m_aComponentTags.getArray();
pTags[0] = rendering::ColorComponentTag::ALPHA;
pTags[1] = rendering::ColorComponentTag::RGB_RED;
pTags[2] = rendering::ColorComponentTag::RGB_GREEN;
pTags[3] = rendering::ColorComponentTag::RGB_BLUE;
m_aComponentBitCounts.realloc(4);
sal_Int32* pCounts = m_aComponentBitCounts.getArray();
pCounts[0] = 8;
pCounts[1] = 8;
pCounts[2] = 8;
pCounts[3] = 8;
m_nRedIndex = 1;
m_nGreenIndex = 2;
m_nBlueIndex = 3;
m_nAlphaIndex = 0;
}
break;
case BMP_FORMAT_32BIT_TC_BGRA:
{
m_bPalette = false;
m_nBitsPerInputPixel = 32;
m_nEndianness = util::Endianness::LITTLE;
m_aLayout.IsMsbFirst = sal_False; // doesn't matter
m_aComponentTags.realloc(4);
sal_Int8* pTags = m_aComponentTags.getArray();
pTags[0] = rendering::ColorComponentTag::RGB_BLUE;
pTags[1] = rendering::ColorComponentTag::RGB_GREEN;
pTags[2] = rendering::ColorComponentTag::RGB_RED;
pTags[3] = rendering::ColorComponentTag::ALPHA;
m_aComponentBitCounts.realloc(4);
sal_Int32* pCounts = m_aComponentBitCounts.getArray();
pCounts[0] = 8;
pCounts[1] = 8;
pCounts[2] = 8;
pCounts[3] = 8;
m_nRedIndex = 2;
m_nGreenIndex = 1;
m_nBlueIndex = 0;
m_nAlphaIndex = 3;
}
break;
case BMP_FORMAT_32BIT_TC_RGBA:
{
m_bPalette = false;
m_nBitsPerInputPixel = 32;
m_nEndianness = util::Endianness::LITTLE;
m_aLayout.IsMsbFirst = sal_False; // doesn't matter
m_aComponentTags.realloc(4);
sal_Int8* pTags = m_aComponentTags.getArray();
pTags[0] = rendering::ColorComponentTag::RGB_RED;
pTags[1] = rendering::ColorComponentTag::RGB_GREEN;
pTags[2] = rendering::ColorComponentTag::RGB_BLUE;
pTags[3] = rendering::ColorComponentTag::ALPHA;
m_aComponentBitCounts.realloc(4);
sal_Int32* pCounts = m_aComponentBitCounts.getArray();
pCounts[0] = 8;
pCounts[1] = 8;
pCounts[2] = 8;
pCounts[3] = 8;
m_nRedIndex = 0;
m_nGreenIndex = 1;
m_nBlueIndex = 2;
m_nAlphaIndex = 3;
}
break;
case BMP_FORMAT_32BIT_TC_MASK:
m_bPalette = false;
m_nBitsPerInputPixel = 32;
m_nEndianness = util::Endianness::LITTLE;
m_aLayout.IsMsbFirst = sal_False; // doesn't matter
setComponentInfo( m_pBmpAcc->GetColorMask().GetRedMask(),
m_pBmpAcc->GetColorMask().GetGreenMask(),
m_pBmpAcc->GetColorMask().GetBlueMask() );
break;
default:
DBG_ERROR( "unsupported bitmap format" );
break;
}
if( m_bPalette )
{
m_aComponentTags.realloc(1);
m_aComponentTags[0] = rendering::ColorComponentTag::INDEX;
m_aComponentBitCounts.realloc(1);
m_aComponentBitCounts[0] = m_nBitsPerInputPixel;
m_nIndexIndex = 0;
}
m_nBitsPerOutputPixel = m_nBitsPerInputPixel;
if( m_aBmpEx.IsTransparent() )
{
// TODO(P1): need to interleave alpha with bitmap data -
// won't fuss with less-than-8 bit for now
m_nBitsPerOutputPixel = std::max(sal_Int32(8),m_nBitsPerInputPixel);
// check whether alpha goes in front or behind the
// bitcount sequence. If pixel format is little endian,
// put it behind all the other channels. If it's big
// endian, put it in front (because later, the actual data
// always gets written after the pixel data)
// TODO(Q1): slight catch - in the case of the
// BMP_FORMAT_32BIT_XX_ARGB formats, duplicate alpha
// channels might happen!
m_aComponentTags.realloc(m_aComponentTags.getLength()+1);
m_aComponentTags[m_aComponentTags.getLength()-1] = rendering::ColorComponentTag::ALPHA;
m_aComponentBitCounts.realloc(m_aComponentBitCounts.getLength()+1);
m_aComponentBitCounts[m_aComponentBitCounts.getLength()-1] = m_aBmpEx.IsAlpha() ? 8 : 1;
if( m_nEndianness == util::Endianness::BIG )
{
// put alpha in front of all the color channels
sal_Int8* pTags =m_aComponentTags.getArray();
sal_Int32* pCounts=m_aComponentBitCounts.getArray();
std::rotate(pTags,
pTags+m_aComponentTags.getLength()-1,
pTags+m_aComponentTags.getLength());
std::rotate(pCounts,
pCounts+m_aComponentBitCounts.getLength()-1,
pCounts+m_aComponentBitCounts.getLength());
++m_nRedIndex;
++m_nGreenIndex;
++m_nBlueIndex;
++m_nIndexIndex;
m_nAlphaIndex=0;
}
// always add a full byte to the pixel size, otherwise
// pixel packing hell breaks loose.
m_nBitsPerOutputPixel += 8;
// adapt scanline parameters
const Size aSize = m_aBitmap.GetSizePixel();
m_aLayout.ScanLineBytes =
m_aLayout.ScanLineStride = (aSize.Width()*m_nBitsPerOutputPixel + 7)/8;
}
}
}
VclCanvasBitmap::~VclCanvasBitmap()
{
if( m_pAlphaAcc )
m_aAlpha.ReleaseAccess(m_pAlphaAcc);
if( m_pBmpAcc )
m_aBitmap.ReleaseAccess(m_pBmpAcc);
}
// XBitmap
geometry::IntegerSize2D SAL_CALL VclCanvasBitmap::getSize() throw (uno::RuntimeException)
{
vos::OGuard aGuard( Application::GetSolarMutex() );
return integerSize2DFromSize( m_aBitmap.GetSizePixel() );
}
::sal_Bool SAL_CALL VclCanvasBitmap::hasAlpha() throw (uno::RuntimeException)
{
vos::OGuard aGuard( Application::GetSolarMutex() );
return m_aBmpEx.IsTransparent();
}
uno::Reference< rendering::XBitmap > SAL_CALL VclCanvasBitmap::getScaledBitmap( const geometry::RealSize2D& newSize,
sal_Bool beFast ) throw (uno::RuntimeException)
{
vos::OGuard aGuard( Application::GetSolarMutex() );
BitmapEx aNewBmp( m_aBitmap );
aNewBmp.Scale( sizeFromRealSize2D( newSize ), beFast ? BMP_SCALE_FASTESTINTERPOLATE : BMP_SCALE_INTERPOLATE );
return uno::Reference<rendering::XBitmap>( new VclCanvasBitmap( aNewBmp ) );
}
// XIntegerReadOnlyBitmap
uno::Sequence< sal_Int8 > SAL_CALL VclCanvasBitmap::getData( rendering::IntegerBitmapLayout& bitmapLayout,
const geometry::IntegerRectangle2D& rect ) throw( lang::IndexOutOfBoundsException,
rendering::VolatileContentDestroyedException,
uno::RuntimeException)
{
vos::OGuard aGuard( Application::GetSolarMutex() );
bitmapLayout = getMemoryLayout();
const ::Rectangle aRequestedArea( vcl::unotools::rectangleFromIntegerRectangle2D(rect) );
if( aRequestedArea.IsEmpty() )
return uno::Sequence< sal_Int8 >();
// Invalid/empty bitmap: no data available
if( !m_pBmpAcc )
throw lang::IndexOutOfBoundsException();
if( m_aBmpEx.IsTransparent() && !m_pAlphaAcc )
throw lang::IndexOutOfBoundsException();
if( aRequestedArea.Left() < 0 || aRequestedArea.Top() < 0 ||
aRequestedArea.Right() > m_pBmpAcc->Width() ||
aRequestedArea.Bottom() > m_pBmpAcc->Height() )
{
throw lang::IndexOutOfBoundsException();
}
uno::Sequence< sal_Int8 > aRet;
Rectangle aRequestedBytes( aRequestedArea );
// adapt to byte boundaries
aRequestedBytes.Left() = aRequestedArea.Left()*m_nBitsPerOutputPixel/8;
aRequestedBytes.Right() = (aRequestedArea.Right()*m_nBitsPerOutputPixel + 7)/8;
// copy stuff to output sequence
aRet.realloc(aRequestedBytes.getWidth()*aRequestedBytes.getHeight());
sal_Int8* pOutBuf = aRet.getArray();
bitmapLayout.ScanLines = aRequestedBytes.getHeight();
bitmapLayout.ScanLineBytes =
bitmapLayout.ScanLineStride= aRequestedBytes.getWidth();
sal_Int32 nScanlineStride=bitmapLayout.ScanLineStride;
if( !(m_pBmpAcc->GetScanlineFormat() & BMP_FORMAT_TOP_DOWN) )
{
pOutBuf += bitmapLayout.ScanLineStride*(aRequestedBytes.getHeight()-1);
nScanlineStride *= -1;
}
if( !m_aBmpEx.IsTransparent() )
{
OSL_ENSURE(m_pBmpAcc,"Invalid bmp read access");
// can return bitmap data as-is
for( long y=aRequestedBytes.Top(); y<aRequestedBytes.Bottom(); ++y )
{
Scanline pScan = m_pBmpAcc->GetScanline(y);
rtl_copyMemory(pOutBuf, pScan+aRequestedBytes.Left(), aRequestedBytes.getWidth());
pOutBuf += nScanlineStride;
}
}
else
{
OSL_ENSURE(m_pBmpAcc,"Invalid bmp read access");
OSL_ENSURE(m_pAlphaAcc,"Invalid alpha read access");
// interleave alpha with bitmap data - note, bitcount is
// always integer multiple of 8
OSL_ENSURE((m_nBitsPerOutputPixel & 0x07) == 0,
"Transparent bitmap bitcount not integer multiple of 8" );
for( long y=aRequestedArea.Top(); y<aRequestedArea.Bottom(); ++y )
{
sal_Int8* pOutScan = pOutBuf;
if( m_nBitsPerInputPixel < 8 )
{
// input less than a byte - copy via GetPixel()
for( long x=aRequestedArea.Left(); x<aRequestedArea.Right(); ++x )
{
*pOutScan++ = m_pBmpAcc->GetPixelIndex(y,x);
*pOutScan++ = m_pAlphaAcc->GetPixelIndex(y,x);
}
}
else
{
const long nNonAlphaBytes( m_nBitsPerInputPixel/8 );
const long nScanlineOffsetLeft(aRequestedArea.Left()*nNonAlphaBytes);
Scanline pScan = m_pBmpAcc->GetScanline(y) + nScanlineOffsetLeft;
// input integer multiple of byte - copy directly
for( long x=aRequestedArea.Left(); x<aRequestedArea.Right(); ++x )
{
for( long i=0; i<nNonAlphaBytes; ++i )
*pOutScan++ = *pScan++;
*pOutScan++ = m_pAlphaAcc->GetPixelIndex( y, x );
}
}
pOutBuf += nScanlineStride;
}
}
return aRet;
}
uno::Sequence< sal_Int8 > SAL_CALL VclCanvasBitmap::getPixel( rendering::IntegerBitmapLayout& bitmapLayout,
const geometry::IntegerPoint2D& pos ) throw (lang::IndexOutOfBoundsException,
rendering::VolatileContentDestroyedException,
uno::RuntimeException)
{
vos::OGuard aGuard( Application::GetSolarMutex() );
bitmapLayout = getMemoryLayout();
// Invalid/empty bitmap: no data available
if( !m_pBmpAcc )
throw lang::IndexOutOfBoundsException();
if( m_aBmpEx.IsTransparent() && !m_pAlphaAcc )
throw lang::IndexOutOfBoundsException();
if( pos.X < 0 || pos.Y < 0 ||
pos.X > m_pBmpAcc->Width() || pos.Y > m_pBmpAcc->Height() )
{
throw lang::IndexOutOfBoundsException();
}
uno::Sequence< sal_Int8 > aRet((m_nBitsPerOutputPixel + 7)/8);
sal_Int8* pOutBuf = aRet.getArray();
// copy stuff to output sequence
bitmapLayout.ScanLines = 1;
bitmapLayout.ScanLineBytes =
bitmapLayout.ScanLineStride= aRet.getLength();
const long nScanlineLeftOffset( pos.X*m_nBitsPerInputPixel/8 );
if( !m_aBmpEx.IsTransparent() )
{
OSL_ENSURE(m_pBmpAcc,"Invalid bmp read access");
// can return bitmap data as-is
Scanline pScan = m_pBmpAcc->GetScanline(pos.Y);
rtl_copyMemory(pOutBuf, pScan+nScanlineLeftOffset, aRet.getLength() );
}
else
{
OSL_ENSURE(m_pBmpAcc,"Invalid bmp read access");
OSL_ENSURE(m_pAlphaAcc,"Invalid alpha read access");
// interleave alpha with bitmap data - note, bitcount is
// always integer multiple of 8
OSL_ENSURE((m_nBitsPerOutputPixel & 0x07) == 0,
"Transparent bitmap bitcount not integer multiple of 8" );
if( m_nBitsPerInputPixel < 8 )
{
// input less than a byte - copy via GetPixel()
*pOutBuf++ = m_pBmpAcc->GetPixelIndex(pos.Y,pos.X);
*pOutBuf = m_pAlphaAcc->GetPixelIndex(pos.Y,pos.X);
}
else
{
const long nNonAlphaBytes( m_nBitsPerInputPixel/8 );
Scanline pScan = m_pBmpAcc->GetScanline(pos.Y);
// input integer multiple of byte - copy directly
rtl_copyMemory(pOutBuf, pScan+nScanlineLeftOffset, nNonAlphaBytes );
pOutBuf += nNonAlphaBytes;
*pOutBuf++ = m_pAlphaAcc->GetPixelIndex(pos.Y,pos.X);
}
}
return aRet;
}
uno::Reference< rendering::XBitmapPalette > SAL_CALL VclCanvasBitmap::getPalette() throw (uno::RuntimeException)
{
vos::OGuard aGuard( Application::GetSolarMutex() );
uno::Reference< XBitmapPalette > aRet;
if( m_bPalette )
aRet.set(this);
return aRet;
}
rendering::IntegerBitmapLayout SAL_CALL VclCanvasBitmap::getMemoryLayout() throw (uno::RuntimeException)
{
vos::OGuard aGuard( Application::GetSolarMutex() );
rendering::IntegerBitmapLayout aLayout( m_aLayout );
// only set references to self on separate copy of
// IntegerBitmapLayout - if we'd set that on m_aLayout, we'd have
// a circular reference!
if( m_bPalette )
aLayout.Palette.set( this );
aLayout.ColorSpace.set( this );
return aLayout;
}
sal_Int32 SAL_CALL VclCanvasBitmap::getNumberOfEntries() throw (uno::RuntimeException)
{
vos::OGuard aGuard( Application::GetSolarMutex() );
if( !m_pBmpAcc )
return 0;
return m_pBmpAcc->HasPalette() ? m_pBmpAcc->GetPaletteEntryCount() : 0 ;
}
sal_Bool SAL_CALL VclCanvasBitmap::getIndex( uno::Sequence< double >& o_entry, sal_Int32 nIndex ) throw (lang::IndexOutOfBoundsException, uno::RuntimeException)
{
vos::OGuard aGuard( Application::GetSolarMutex() );
const sal_uInt16 nCount( m_pBmpAcc ?
(m_pBmpAcc->HasPalette() ? m_pBmpAcc->GetPaletteEntryCount() : 0 ) : 0 );
OSL_ENSURE(nIndex >= 0 && nIndex < nCount,"Palette index out of range");
if( nIndex < 0 || nIndex >= nCount )
throw lang::IndexOutOfBoundsException(::rtl::OUString::createFromAscii("Palette index out of range"),
static_cast<rendering::XBitmapPalette*>(this));
const BitmapColor aCol = m_pBmpAcc->GetPaletteColor(sal::static_int_cast<sal_uInt16>(nIndex));
o_entry.realloc(3);
double* pColor=o_entry.getArray();
pColor[0] = aCol.GetRed();
pColor[1] = aCol.GetGreen();
pColor[2] = aCol.GetBlue();
return sal_True; // no palette transparency here.
}
sal_Bool SAL_CALL VclCanvasBitmap::setIndex( const uno::Sequence< double >&, sal_Bool, sal_Int32 nIndex ) throw (lang::IndexOutOfBoundsException, lang::IllegalArgumentException, uno::RuntimeException)
{
vos::OGuard aGuard( Application::GetSolarMutex() );
const sal_uInt16 nCount( m_pBmpAcc ?
(m_pBmpAcc->HasPalette() ? m_pBmpAcc->GetPaletteEntryCount() : 0 ) : 0 );
OSL_ENSURE(nIndex >= 0 && nIndex < nCount,"Palette index out of range");
if( nIndex < 0 || nIndex >= nCount )
throw lang::IndexOutOfBoundsException(::rtl::OUString::createFromAscii("Palette index out of range"),
static_cast<rendering::XBitmapPalette*>(this));
return sal_False; // read-only implementation
}
namespace
{
struct PaletteColorSpaceHolder: public rtl::StaticWithInit<uno::Reference<rendering::XColorSpace>,
PaletteColorSpaceHolder>
{
uno::Reference<rendering::XColorSpace> operator()()
{
return vcl::unotools::createStandardColorSpace();
}
};
}
uno::Reference< rendering::XColorSpace > SAL_CALL VclCanvasBitmap::getColorSpace( ) throw (uno::RuntimeException)
{
// this is the method from XBitmapPalette. Return palette color
// space here
return PaletteColorSpaceHolder::get();
}
sal_Int8 SAL_CALL VclCanvasBitmap::getType( ) throw (uno::RuntimeException)
{
return rendering::ColorSpaceType::RGB;
}
uno::Sequence< ::sal_Int8 > SAL_CALL VclCanvasBitmap::getComponentTags( ) throw (uno::RuntimeException)
{
vos::OGuard aGuard( Application::GetSolarMutex() );
return m_aComponentTags;
}
sal_Int8 SAL_CALL VclCanvasBitmap::getRenderingIntent( ) throw (uno::RuntimeException)
{
return rendering::RenderingIntent::PERCEPTUAL;
}
uno::Sequence< ::beans::PropertyValue > SAL_CALL VclCanvasBitmap::getProperties( ) throw (uno::RuntimeException)
{
return uno::Sequence< ::beans::PropertyValue >();
}
uno::Sequence< double > SAL_CALL VclCanvasBitmap::convertColorSpace( const uno::Sequence< double >& deviceColor,
const uno::Reference< ::rendering::XColorSpace >& targetColorSpace ) throw (uno::RuntimeException)
{
// TODO(P3): if we know anything about target
// colorspace, this can be greatly sped up
uno::Sequence<rendering::ARGBColor> aIntermediate(
convertToARGB(deviceColor));
return targetColorSpace->convertFromARGB(aIntermediate);
}
uno::Sequence<rendering::RGBColor> SAL_CALL VclCanvasBitmap::convertToRGB( const uno::Sequence< double >& deviceColor ) throw (lang::IllegalArgumentException,uno::RuntimeException)
{
vos::OGuard aGuard( Application::GetSolarMutex() );
const sal_Size nLen( deviceColor.getLength() );
const sal_Int32 nComponentsPerPixel(m_aComponentTags.getLength());
ENSURE_ARG_OR_THROW2(nLen%nComponentsPerPixel==0,
"number of channels no multiple of pixel element count",
static_cast<rendering::XBitmapPalette*>(this), 01);
uno::Sequence< rendering::RGBColor > aRes(nLen/nComponentsPerPixel);
rendering::RGBColor* pOut( aRes.getArray() );
if( m_bPalette )
{
OSL_ENSURE(m_nIndexIndex != -1,
"Invalid color channel indices");
ENSURE_OR_THROW(m_pBmpAcc,
"Unable to get BitmapAccess");
for( sal_Size i=0; i<nLen; i+=nComponentsPerPixel )
{
const BitmapColor aCol = m_pBmpAcc->GetPaletteColor(
sal::static_int_cast<sal_uInt16>(deviceColor[i+m_nIndexIndex]));
// TODO(F3): Convert result to sRGB color space
*pOut++ = rendering::RGBColor(toDoubleColor(aCol.GetRed()),
toDoubleColor(aCol.GetGreen()),
toDoubleColor(aCol.GetBlue()));
}
}
else
{
OSL_ENSURE(m_nRedIndex != -1 && m_nGreenIndex != -1 && m_nBlueIndex != -1,
"Invalid color channel indices");
for( sal_Size i=0; i<nLen; i+=nComponentsPerPixel )
{
// TODO(F3): Convert result to sRGB color space
*pOut++ = rendering::RGBColor(
deviceColor[i+m_nRedIndex],
deviceColor[i+m_nGreenIndex],
deviceColor[i+m_nBlueIndex]);
}
}
return aRes;
}
uno::Sequence<rendering::ARGBColor> SAL_CALL VclCanvasBitmap::convertToARGB( const uno::Sequence< double >& deviceColor ) throw (lang::IllegalArgumentException,uno::RuntimeException)
{
vos::OGuard aGuard( Application::GetSolarMutex() );
const sal_Size nLen( deviceColor.getLength() );
const sal_Int32 nComponentsPerPixel(m_aComponentTags.getLength());
ENSURE_ARG_OR_THROW2(nLen%nComponentsPerPixel==0,
"number of channels no multiple of pixel element count",
static_cast<rendering::XBitmapPalette*>(this), 01);
uno::Sequence< rendering::ARGBColor > aRes(nLen/nComponentsPerPixel);
rendering::ARGBColor* pOut( aRes.getArray() );
if( m_bPalette )
{
OSL_ENSURE(m_nIndexIndex != -1,
"Invalid color channel indices");
ENSURE_OR_THROW(m_pBmpAcc,
"Unable to get BitmapAccess");
for( sal_Size i=0; i<nLen; i+=nComponentsPerPixel )
{
const BitmapColor aCol = m_pBmpAcc->GetPaletteColor(
sal::static_int_cast<sal_uInt16>(deviceColor[i+m_nIndexIndex]));
// TODO(F3): Convert result to sRGB color space
const double nAlpha( m_nAlphaIndex != -1 ? 1.0 - deviceColor[i+m_nAlphaIndex] : 1.0 );
*pOut++ = rendering::ARGBColor(nAlpha,
toDoubleColor(aCol.GetRed()),
toDoubleColor(aCol.GetGreen()),
toDoubleColor(aCol.GetBlue()));
}
}
else
{
OSL_ENSURE(m_nRedIndex != -1 && m_nGreenIndex != -1 && m_nBlueIndex != -1,
"Invalid color channel indices");
for( sal_Size i=0; i<nLen; i+=nComponentsPerPixel )
{
// TODO(F3): Convert result to sRGB color space
const double nAlpha( m_nAlphaIndex != -1 ? 1.0 - deviceColor[i+m_nAlphaIndex] : 1.0 );
*pOut++ = rendering::ARGBColor(
nAlpha,
deviceColor[i+m_nRedIndex],
deviceColor[i+m_nGreenIndex],
deviceColor[i+m_nBlueIndex]);
}
}
return aRes;
}
uno::Sequence<rendering::ARGBColor> SAL_CALL VclCanvasBitmap::convertToPARGB( const uno::Sequence< double >& deviceColor ) throw (lang::IllegalArgumentException,uno::RuntimeException)
{
vos::OGuard aGuard( Application::GetSolarMutex() );
const sal_Size nLen( deviceColor.getLength() );
const sal_Int32 nComponentsPerPixel(m_aComponentTags.getLength());
ENSURE_ARG_OR_THROW2(nLen%nComponentsPerPixel==0,
"number of channels no multiple of pixel element count",
static_cast<rendering::XBitmapPalette*>(this), 01);
uno::Sequence< rendering::ARGBColor > aRes(nLen/nComponentsPerPixel);
rendering::ARGBColor* pOut( aRes.getArray() );
if( m_bPalette )
{
OSL_ENSURE(m_nIndexIndex != -1,
"Invalid color channel indices");
ENSURE_OR_THROW(m_pBmpAcc,
"Unable to get BitmapAccess");
for( sal_Size i=0; i<nLen; i+=nComponentsPerPixel )
{
const BitmapColor aCol = m_pBmpAcc->GetPaletteColor(
sal::static_int_cast<sal_uInt16>(deviceColor[i+m_nIndexIndex]));
// TODO(F3): Convert result to sRGB color space
const double nAlpha( m_nAlphaIndex != -1 ? 1.0 - deviceColor[i+m_nAlphaIndex] : 1.0 );
*pOut++ = rendering::ARGBColor(nAlpha,
nAlpha*toDoubleColor(aCol.GetRed()),
nAlpha*toDoubleColor(aCol.GetGreen()),
nAlpha*toDoubleColor(aCol.GetBlue()));
}
}
else
{
OSL_ENSURE(m_nRedIndex != -1 && m_nGreenIndex != -1 && m_nBlueIndex != -1,
"Invalid color channel indices");
for( sal_Size i=0; i<nLen; i+=nComponentsPerPixel )
{
// TODO(F3): Convert result to sRGB color space
const double nAlpha( m_nAlphaIndex != -1 ? 1.0 - deviceColor[i+m_nAlphaIndex] : 1.0 );
*pOut++ = rendering::ARGBColor(
nAlpha,
nAlpha*deviceColor[i+m_nRedIndex],
nAlpha*deviceColor[i+m_nGreenIndex],
nAlpha*deviceColor[i+m_nBlueIndex]);
}
}
return aRes;
}
uno::Sequence< double > SAL_CALL VclCanvasBitmap::convertFromRGB( const uno::Sequence<rendering::RGBColor>& rgbColor ) throw (lang::IllegalArgumentException,uno::RuntimeException)
{
vos::OGuard aGuard( Application::GetSolarMutex() );
const sal_Size nLen( rgbColor.getLength() );
const sal_Int32 nComponentsPerPixel(m_aComponentTags.getLength());
uno::Sequence< double > aRes(nLen*nComponentsPerPixel);
double* pColors=aRes.getArray();
if( m_bPalette )
{
for( sal_Size i=0; i<nLen; ++i )
{
pColors[m_nIndexIndex] = m_pBmpAcc->GetBestPaletteIndex(
BitmapColor(toByteColor(rgbColor[i].Red),
toByteColor(rgbColor[i].Green),
toByteColor(rgbColor[i].Blue)));
if( m_nAlphaIndex != -1 )
pColors[m_nAlphaIndex] = 1.0;
pColors += nComponentsPerPixel;
}
}
else
{
for( sal_Size i=0; i<nLen; ++i )
{
pColors[m_nRedIndex] = rgbColor[i].Red;
pColors[m_nGreenIndex] = rgbColor[i].Green;
pColors[m_nBlueIndex] = rgbColor[i].Blue;
if( m_nAlphaIndex != -1 )
pColors[m_nAlphaIndex] = 1.0;
pColors += nComponentsPerPixel;
}
}
return aRes;
}
uno::Sequence< double > SAL_CALL VclCanvasBitmap::convertFromARGB( const uno::Sequence<rendering::ARGBColor>& rgbColor ) throw (lang::IllegalArgumentException,uno::RuntimeException)
{
vos::OGuard aGuard( Application::GetSolarMutex() );
const sal_Size nLen( rgbColor.getLength() );
const sal_Int32 nComponentsPerPixel(m_aComponentTags.getLength());
uno::Sequence< double > aRes(nLen*nComponentsPerPixel);
double* pColors=aRes.getArray();
if( m_bPalette )
{
for( sal_Size i=0; i<nLen; ++i )
{
pColors[m_nIndexIndex] = m_pBmpAcc->GetBestPaletteIndex(
BitmapColor(toByteColor(rgbColor[i].Red),
toByteColor(rgbColor[i].Green),
toByteColor(rgbColor[i].Blue)));
if( m_nAlphaIndex != -1 )
pColors[m_nAlphaIndex] = rgbColor[i].Alpha;
pColors += nComponentsPerPixel;
}
}
else
{
for( sal_Size i=0; i<nLen; ++i )
{
pColors[m_nRedIndex] = rgbColor[i].Red;
pColors[m_nGreenIndex] = rgbColor[i].Green;
pColors[m_nBlueIndex] = rgbColor[i].Blue;
if( m_nAlphaIndex != -1 )
pColors[m_nAlphaIndex] = rgbColor[i].Alpha;
pColors += nComponentsPerPixel;
}
}
return aRes;
}
uno::Sequence< double > SAL_CALL VclCanvasBitmap::convertFromPARGB( const uno::Sequence<rendering::ARGBColor>& rgbColor ) throw (lang::IllegalArgumentException,uno::RuntimeException)
{
vos::OGuard aGuard( Application::GetSolarMutex() );
const sal_Size nLen( rgbColor.getLength() );
const sal_Int32 nComponentsPerPixel(m_aComponentTags.getLength());
uno::Sequence< double > aRes(nLen*nComponentsPerPixel);
double* pColors=aRes.getArray();
if( m_bPalette )
{
for( sal_Size i=0; i<nLen; ++i )
{
const double nAlpha( rgbColor[i].Alpha );
pColors[m_nIndexIndex] = m_pBmpAcc->GetBestPaletteIndex(
BitmapColor(toByteColor(rgbColor[i].Red / nAlpha),
toByteColor(rgbColor[i].Green / nAlpha),
toByteColor(rgbColor[i].Blue / nAlpha)));
if( m_nAlphaIndex != -1 )
pColors[m_nAlphaIndex] = nAlpha;
pColors += nComponentsPerPixel;
}
}
else
{
for( sal_Size i=0; i<nLen; ++i )
{
const double nAlpha( rgbColor[i].Alpha );
pColors[m_nRedIndex] = rgbColor[i].Red / nAlpha;
pColors[m_nGreenIndex] = rgbColor[i].Green / nAlpha;
pColors[m_nBlueIndex] = rgbColor[i].Blue / nAlpha;
if( m_nAlphaIndex != -1 )
pColors[m_nAlphaIndex] = nAlpha;
pColors += nComponentsPerPixel;
}
}
return aRes;
}
sal_Int32 SAL_CALL VclCanvasBitmap::getBitsPerPixel( ) throw (uno::RuntimeException)
{
vos::OGuard aGuard( Application::GetSolarMutex() );
return m_nBitsPerOutputPixel;
}
uno::Sequence< ::sal_Int32 > SAL_CALL VclCanvasBitmap::getComponentBitCounts( ) throw (uno::RuntimeException)
{
vos::OGuard aGuard( Application::GetSolarMutex() );
return m_aComponentBitCounts;
}
sal_Int8 SAL_CALL VclCanvasBitmap::getEndianness( ) throw (uno::RuntimeException)
{
vos::OGuard aGuard( Application::GetSolarMutex() );
return m_nEndianness;
}
uno::Sequence<double> SAL_CALL VclCanvasBitmap::convertFromIntegerColorSpace( const uno::Sequence< ::sal_Int8 >& deviceColor,
const uno::Reference< ::rendering::XColorSpace >& targetColorSpace ) throw (lang::IllegalArgumentException,uno::RuntimeException)
{
if( dynamic_cast<VclCanvasBitmap*>(targetColorSpace.get()) )
{
vos::OGuard aGuard( Application::GetSolarMutex() );
const sal_Size nLen( deviceColor.getLength() );
const sal_Int32 nComponentsPerPixel(m_aComponentTags.getLength());
ENSURE_ARG_OR_THROW2(nLen%nComponentsPerPixel==0,
"number of channels no multiple of pixel element count",
static_cast<rendering::XBitmapPalette*>(this), 01);
uno::Sequence<double> aRes(nLen);
double* pOut( aRes.getArray() );
if( m_bPalette )
{
OSL_ENSURE(m_nIndexIndex != -1,
"Invalid color channel indices");
ENSURE_OR_THROW(m_pBmpAcc,
"Unable to get BitmapAccess");
for( sal_Size i=0; i<nLen; i+=nComponentsPerPixel )
{
const BitmapColor aCol = m_pBmpAcc->GetPaletteColor(
sal::static_int_cast<sal_uInt16>(deviceColor[i+m_nIndexIndex]));
// TODO(F3): Convert result to sRGB color space
const double nAlpha( m_nAlphaIndex != -1 ? 1.0 - deviceColor[i+m_nAlphaIndex] : 1.0 );
*pOut++ = toDoubleColor(aCol.GetRed());
*pOut++ = toDoubleColor(aCol.GetGreen());
*pOut++ = toDoubleColor(aCol.GetBlue());
*pOut++ = nAlpha;
}
}
else
{
OSL_ENSURE(m_nRedIndex != -1 && m_nGreenIndex != -1 && m_nBlueIndex != -1,
"Invalid color channel indices");
for( sal_Size i=0; i<nLen; i+=nComponentsPerPixel )
{
// TODO(F3): Convert result to sRGB color space
const double nAlpha( m_nAlphaIndex != -1 ? 1.0 - deviceColor[i+m_nAlphaIndex] : 1.0 );
*pOut++ = deviceColor[i+m_nRedIndex];
*pOut++ = deviceColor[i+m_nGreenIndex];
*pOut++ = deviceColor[i+m_nBlueIndex];
*pOut++ = nAlpha;
}
}
return aRes;
}
else
{
// TODO(P3): if we know anything about target
// colorspace, this can be greatly sped up
uno::Sequence<rendering::ARGBColor> aIntermediate(
convertIntegerToARGB(deviceColor));
return targetColorSpace->convertFromARGB(aIntermediate);
}
}
uno::Sequence< ::sal_Int8 > SAL_CALL VclCanvasBitmap::convertToIntegerColorSpace( const uno::Sequence< ::sal_Int8 >& deviceColor,
const uno::Reference< ::rendering::XIntegerBitmapColorSpace >& targetColorSpace ) throw (lang::IllegalArgumentException,uno::RuntimeException)
{
if( dynamic_cast<VclCanvasBitmap*>(targetColorSpace.get()) )
{
// it's us, so simply pass-through the data
return deviceColor;
}
else
{
// TODO(P3): if we know anything about target
// colorspace, this can be greatly sped up
uno::Sequence<rendering::ARGBColor> aIntermediate(
convertIntegerToARGB(deviceColor));
return targetColorSpace->convertIntegerFromARGB(aIntermediate);
}
}
uno::Sequence<rendering::RGBColor> SAL_CALL VclCanvasBitmap::convertIntegerToRGB( const uno::Sequence< ::sal_Int8 >& deviceColor ) throw (lang::IllegalArgumentException,uno::RuntimeException)
{
vos::OGuard aGuard( Application::GetSolarMutex() );
const sal_uInt8* pIn( reinterpret_cast<const sal_uInt8*>(deviceColor.getConstArray()) );
const sal_Size nLen( deviceColor.getLength() );
const sal_Int32 nNumColors((nLen*8 + m_nBitsPerOutputPixel-1)/m_nBitsPerOutputPixel);
uno::Sequence< rendering::RGBColor > aRes(nNumColors);
rendering::RGBColor* pOut( aRes.getArray() );
ENSURE_OR_THROW(m_pBmpAcc,
"Unable to get BitmapAccess");
if( m_aBmpEx.IsTransparent() )
{
const sal_Int32 nBytesPerPixel((m_nBitsPerOutputPixel+7)/8);
for( sal_Size i=0; i<nLen; i+=nBytesPerPixel )
{
// if palette, index is guaranteed to be 8 bit
const BitmapColor aCol =
m_bPalette ?
m_pBmpAcc->GetPaletteColor(*pIn) :
m_pBmpAcc->GetPixelFromData(pIn,0);
// TODO(F3): Convert result to sRGB color space
*pOut++ = rendering::RGBColor(toDoubleColor(aCol.GetRed()),
toDoubleColor(aCol.GetGreen()),
toDoubleColor(aCol.GetBlue()));
// skips alpha
pIn += nBytesPerPixel;
}
}
else
{
for( sal_Int32 i=0; i<nNumColors; ++i )
{
const BitmapColor aCol =
m_bPalette ?
m_pBmpAcc->GetPaletteColor( m_pBmpAcc->GetPixelFromData( pIn, i ).GetIndex()) :
m_pBmpAcc->GetPixelFromData(pIn, i);
// TODO(F3): Convert result to sRGB color space
*pOut++ = rendering::RGBColor(toDoubleColor(aCol.GetRed()),
toDoubleColor(aCol.GetGreen()),
toDoubleColor(aCol.GetBlue()));
}
}
return aRes;
}
uno::Sequence<rendering::ARGBColor> SAL_CALL VclCanvasBitmap::convertIntegerToARGB( const uno::Sequence< ::sal_Int8 >& deviceColor ) throw (lang::IllegalArgumentException,uno::RuntimeException)
{
vos::OGuard aGuard( Application::GetSolarMutex() );
const sal_uInt8* pIn( reinterpret_cast<const sal_uInt8*>(deviceColor.getConstArray()) );
const sal_Size nLen( deviceColor.getLength() );
const sal_Int32 nNumColors((nLen*8 + m_nBitsPerOutputPixel-1)/m_nBitsPerOutputPixel);
uno::Sequence< rendering::ARGBColor > aRes(nNumColors);
rendering::ARGBColor* pOut( aRes.getArray() );
ENSURE_OR_THROW(m_pBmpAcc,
"Unable to get BitmapAccess");
if( m_aBmpEx.IsTransparent() )
{
const long nNonAlphaBytes( (m_nBitsPerInputPixel+7)/8 );
const sal_Int32 nBytesPerPixel((m_nBitsPerOutputPixel+7)/8);
const sal_uInt8 nAlphaFactor( m_aBmpEx.IsAlpha() ? 1 : 255 );
for( sal_Size i=0; i<nLen; i+=nBytesPerPixel )
{
// if palette, index is guaranteed to be 8 bit
const BitmapColor aCol =
m_bPalette ?
m_pBmpAcc->GetPaletteColor(*pIn) :
m_pBmpAcc->GetPixelFromData(pIn,0);
// TODO(F3): Convert result to sRGB color space
*pOut++ = rendering::ARGBColor(1.0 - toDoubleColor(nAlphaFactor*pIn[nNonAlphaBytes]),
toDoubleColor(aCol.GetRed()),
toDoubleColor(aCol.GetGreen()),
toDoubleColor(aCol.GetBlue()));
pIn += nBytesPerPixel;
}
}
else
{
for( sal_Int32 i=0; i<nNumColors; ++i )
{
const BitmapColor aCol =
m_bPalette ?
m_pBmpAcc->GetPaletteColor( m_pBmpAcc->GetPixelFromData( pIn, i ).GetIndex() ) :
m_pBmpAcc->GetPixelFromData(pIn, i);
// TODO(F3): Convert result to sRGB color space
*pOut++ = rendering::ARGBColor(1.0,
toDoubleColor(aCol.GetRed()),
toDoubleColor(aCol.GetGreen()),
toDoubleColor(aCol.GetBlue()));
}
}
return aRes;
}
uno::Sequence<rendering::ARGBColor> SAL_CALL VclCanvasBitmap::convertIntegerToPARGB( const uno::Sequence< ::sal_Int8 >& deviceColor ) throw (lang::IllegalArgumentException,uno::RuntimeException)
{
vos::OGuard aGuard( Application::GetSolarMutex() );
const sal_uInt8* pIn( reinterpret_cast<const sal_uInt8*>(deviceColor.getConstArray()) );
const sal_Size nLen( deviceColor.getLength() );
const sal_Int32 nNumColors((nLen*8 + m_nBitsPerOutputPixel-1)/m_nBitsPerOutputPixel);
uno::Sequence< rendering::ARGBColor > aRes(nNumColors);
rendering::ARGBColor* pOut( aRes.getArray() );
ENSURE_OR_THROW(m_pBmpAcc,
"Unable to get BitmapAccess");
if( m_aBmpEx.IsTransparent() )
{
const long nNonAlphaBytes( (m_nBitsPerInputPixel+7)/8 );
const sal_Int32 nBytesPerPixel((m_nBitsPerOutputPixel+7)/8);
const sal_uInt8 nAlphaFactor( m_aBmpEx.IsAlpha() ? 1 : 255 );
for( sal_Size i=0; i<nLen; i+=nBytesPerPixel )
{
// if palette, index is guaranteed to be 8 bit
const BitmapColor aCol =
m_bPalette ?
m_pBmpAcc->GetPaletteColor(*pIn) :
m_pBmpAcc->GetPixelFromData(pIn,0);
// TODO(F3): Convert result to sRGB color space
const double nAlpha( 1.0 - toDoubleColor(nAlphaFactor*pIn[nNonAlphaBytes]) );
*pOut++ = rendering::ARGBColor(nAlpha,
nAlpha*toDoubleColor(aCol.GetRed()),
nAlpha*toDoubleColor(aCol.GetGreen()),
nAlpha*toDoubleColor(aCol.GetBlue()));
pIn += nBytesPerPixel;
}
}
else
{
for( sal_Int32 i=0; i<nNumColors; ++i )
{
const BitmapColor aCol =
m_bPalette ?
m_pBmpAcc->GetPaletteColor( m_pBmpAcc->GetPixelFromData( pIn, i ).GetIndex() ) :
m_pBmpAcc->GetPixelFromData(pIn, i);
// TODO(F3): Convert result to sRGB color space
*pOut++ = rendering::ARGBColor(1.0,
toDoubleColor(aCol.GetRed()),
toDoubleColor(aCol.GetGreen()),
toDoubleColor(aCol.GetBlue()));
}
}
return aRes;
}
uno::Sequence< ::sal_Int8 > SAL_CALL VclCanvasBitmap::convertIntegerFromRGB( const uno::Sequence<rendering::RGBColor>& rgbColor ) throw (lang::IllegalArgumentException,uno::RuntimeException)
{
vos::OGuard aGuard( Application::GetSolarMutex() );
const sal_Size nLen( rgbColor.getLength() );
const sal_Int32 nNumBytes((nLen*m_nBitsPerOutputPixel+7)/8);
uno::Sequence< sal_Int8 > aRes(nNumBytes);
sal_uInt8* pColors=reinterpret_cast<sal_uInt8*>(aRes.getArray());
if( m_aBmpEx.IsTransparent() )
{
const long nNonAlphaBytes( (m_nBitsPerInputPixel+7)/8 );
for( sal_Size i=0; i<nLen; ++i )
{
const BitmapColor aCol(toByteColor(rgbColor[i].Red),
toByteColor(rgbColor[i].Green),
toByteColor(rgbColor[i].Blue));
const BitmapColor aCol2 =
m_bPalette ?
BitmapColor(
sal::static_int_cast<sal_uInt8>(m_pBmpAcc->GetBestPaletteIndex( aCol ))) :
aCol;
m_pBmpAcc->SetPixelOnData(pColors,0,aCol2);
pColors += nNonAlphaBytes;
*pColors++ = sal_uInt8(255);
}
}
else
{
for( sal_Size i=0; i<nLen; ++i )
{
const BitmapColor aCol(toByteColor(rgbColor[i].Red),
toByteColor(rgbColor[i].Green),
toByteColor(rgbColor[i].Blue));
const BitmapColor aCol2 =
m_bPalette ?
BitmapColor(
sal::static_int_cast<sal_uInt8>(m_pBmpAcc->GetBestPaletteIndex( aCol ))) :
aCol;
m_pBmpAcc->SetPixelOnData(pColors,i,aCol2);
}
}
return aRes;
}
uno::Sequence< ::sal_Int8 > SAL_CALL VclCanvasBitmap::convertIntegerFromARGB( const uno::Sequence<rendering::ARGBColor>& rgbColor ) throw (lang::IllegalArgumentException,uno::RuntimeException)
{
vos::OGuard aGuard( Application::GetSolarMutex() );
const sal_Size nLen( rgbColor.getLength() );
const sal_Int32 nNumBytes((nLen*m_nBitsPerOutputPixel+7)/8);
uno::Sequence< sal_Int8 > aRes(nNumBytes);
sal_uInt8* pColors=reinterpret_cast<sal_uInt8*>(aRes.getArray());
if( m_aBmpEx.IsTransparent() )
{
const long nNonAlphaBytes( (m_nBitsPerInputPixel+7)/8 );
for( sal_Size i=0; i<nLen; ++i )
{
const BitmapColor aCol(toByteColor(rgbColor[i].Red),
toByteColor(rgbColor[i].Green),
toByteColor(rgbColor[i].Blue));
const BitmapColor aCol2 =
m_bPalette ?
BitmapColor(
sal::static_int_cast<sal_uInt8>(m_pBmpAcc->GetBestPaletteIndex( aCol ))) :
aCol;
m_pBmpAcc->SetPixelOnData(pColors,0,aCol2);
pColors += nNonAlphaBytes;
*pColors++ = 255 - toByteColor(rgbColor[i].Alpha);
}
}
else
{
for( sal_Size i=0; i<nLen; ++i )
{
const BitmapColor aCol(toByteColor(rgbColor[i].Red),
toByteColor(rgbColor[i].Green),
toByteColor(rgbColor[i].Blue));
const BitmapColor aCol2 =
m_bPalette ?
BitmapColor(
sal::static_int_cast<sal_uInt8>(m_pBmpAcc->GetBestPaletteIndex( aCol ))) :
aCol;
m_pBmpAcc->SetPixelOnData(pColors,i,aCol2);
}
}
return aRes;
}
uno::Sequence< ::sal_Int8 > SAL_CALL VclCanvasBitmap::convertIntegerFromPARGB( const uno::Sequence<rendering::ARGBColor>& rgbColor ) throw (lang::IllegalArgumentException,uno::RuntimeException)
{
vos::OGuard aGuard( Application::GetSolarMutex() );
const sal_Size nLen( rgbColor.getLength() );
const sal_Int32 nNumBytes((nLen*m_nBitsPerOutputPixel+7)/8);
uno::Sequence< sal_Int8 > aRes(nNumBytes);
sal_uInt8* pColors=reinterpret_cast<sal_uInt8*>(aRes.getArray());
if( m_aBmpEx.IsTransparent() )
{
const long nNonAlphaBytes( (m_nBitsPerInputPixel+7)/8 );
for( sal_Size i=0; i<nLen; ++i )
{
const double nAlpha( rgbColor[i].Alpha );
const BitmapColor aCol(toByteColor(rgbColor[i].Red / nAlpha),
toByteColor(rgbColor[i].Green / nAlpha),
toByteColor(rgbColor[i].Blue / nAlpha));
const BitmapColor aCol2 =
m_bPalette ?
BitmapColor(
sal::static_int_cast<sal_uInt8>(m_pBmpAcc->GetBestPaletteIndex( aCol ))) :
aCol;
m_pBmpAcc->SetPixelOnData(pColors,0,aCol2);
pColors += nNonAlphaBytes;
*pColors++ = 255 - toByteColor(nAlpha);
}
}
else
{
for( sal_Size i=0; i<nLen; ++i )
{
const BitmapColor aCol(toByteColor(rgbColor[i].Red),
toByteColor(rgbColor[i].Green),
toByteColor(rgbColor[i].Blue));
const BitmapColor aCol2 =
m_bPalette ?
BitmapColor(
sal::static_int_cast<sal_uInt8>(m_pBmpAcc->GetBestPaletteIndex( aCol ))) :
aCol;
m_pBmpAcc->SetPixelOnData(pColors,i,aCol2);
}
}
return aRes;
}
BitmapEx VclCanvasBitmap::getBitmapEx() const
{
return m_aBmpEx;
}