blob: bb3ae073a5ac924e38ed004ef15c43db15617bc5 [file] [log] [blame]
/**************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_vcl.hxx"
#include <vcl/salbtype.hxx>
#include <vcl/dibtools.hxx>
#include <tools/zcodec.hxx>
#include <tools/stream.hxx>
#include <vcl/bitmapex.hxx>
#include <vcl/bmpacc.hxx>
#include <vcl/outdev.hxx>
//////////////////////////////////////////////////////////////////////////////
// - Defines -
#define DIBCOREHEADERSIZE ( 12UL )
#define DIBINFOHEADERSIZE ( sizeof(DIBInfoHeader) )
#define DIBV5HEADERSIZE ( sizeof(DIBV5Header) )
//////////////////////////////////////////////////////////////////////////////
// - Compression defines
#define COMPRESS_OWN ('S'|('D'<<8UL))
#define COMPRESS_NONE ( 0UL )
#define RLE_8 ( 1UL )
#define RLE_4 ( 2UL )
#define BITFIELDS ( 3UL )
#define ZCOMPRESS ( COMPRESS_OWN | 0x01000000UL ) /* == 'SD01' (binary) */
//////////////////////////////////////////////////////////////////////////////
// - DIBInfoHeader and DIBV5Header
typedef sal_Int32 FXPT2DOT30;
struct CIEXYZ
{
FXPT2DOT30 aXyzX;
FXPT2DOT30 aXyzY;
FXPT2DOT30 aXyzZ;
CIEXYZ()
: aXyzX(0L),
aXyzY(0L),
aXyzZ(0L)
{}
~CIEXYZ()
{}
};
struct CIEXYZTriple
{
CIEXYZ aXyzRed;
CIEXYZ aXyzGreen;
CIEXYZ aXyzBlue;
CIEXYZTriple()
: aXyzRed(),
aXyzGreen(),
aXyzBlue()
{}
~CIEXYZTriple()
{}
};
struct DIBInfoHeader
{
sal_uInt32 nSize;
sal_Int32 nWidth;
sal_Int32 nHeight;
sal_uInt16 nPlanes;
sal_uInt16 nBitCount;
sal_uInt32 nCompression;
sal_uInt32 nSizeImage;
sal_Int32 nXPelsPerMeter;
sal_Int32 nYPelsPerMeter;
sal_uInt32 nColsUsed;
sal_uInt32 nColsImportant;
DIBInfoHeader()
: nSize(0UL),
nWidth(0UL),
nHeight(0UL),
nPlanes(0),
nBitCount(0),
nCompression(0),
nSizeImage(0),
nXPelsPerMeter(0UL),
nYPelsPerMeter(0UL),
nColsUsed(0UL),
nColsImportant(0UL)
{}
~DIBInfoHeader()
{}
};
struct DIBV5Header : public DIBInfoHeader
{
sal_uInt32 nV5RedMask;
sal_uInt32 nV5GreenMask;
sal_uInt32 nV5BlueMask;
sal_uInt32 nV5AlphaMask;
sal_uInt32 nV5CSType;
CIEXYZTriple aV5Endpoints;
sal_uInt32 nV5GammaRed;
sal_uInt32 nV5GammaGreen;
sal_uInt32 nV5GammaBlue;
sal_uInt32 nV5Intent;
sal_uInt32 nV5ProfileData;
sal_uInt32 nV5ProfileSize;
sal_uInt32 nV5Reserved;
DIBV5Header()
: DIBInfoHeader(),
nV5RedMask(0UL),
nV5GreenMask(0UL),
nV5BlueMask(0UL),
nV5AlphaMask(0UL),
nV5CSType(0UL),
aV5Endpoints(),
nV5GammaRed(0UL),
nV5GammaGreen(0UL),
nV5GammaBlue(0UL),
nV5Intent(0UL),
nV5ProfileData(0UL),
nV5ProfileSize(0UL),
nV5Reserved(0UL)
{}
~DIBV5Header()
{}
};
//////////////////////////////////////////////////////////////////////////////
namespace
{
inline sal_uInt16 discretizeBitcount( sal_uInt16 nInputCount )
{
return ( nInputCount <= 1 ) ? 1 :
( nInputCount <= 4 ) ? 4 :
( nInputCount <= 8 ) ? 8 : 24;
}
inline bool isBitfieldCompression( sal_uLong nScanlineFormat )
{
return (BMP_FORMAT_16BIT_TC_LSB_MASK == nScanlineFormat) || (BMP_FORMAT_32BIT_TC_MASK == nScanlineFormat);
}
}
//////////////////////////////////////////////////////////////////////////////
bool ImplReadDIBInfoHeader(SvStream& rIStm, DIBV5Header& rHeader, bool& bTopDown)
{
// BITMAPINFOHEADER or BITMAPCOREHEADER or BITMAPV5HEADER
const sal_Size aStartPos(rIStm.Tell());
rIStm >> rHeader.nSize;
// BITMAPCOREHEADER
if ( rHeader.nSize == DIBCOREHEADERSIZE )
{
sal_Int16 nTmp16;
rIStm >> nTmp16; rHeader.nWidth = nTmp16;
rIStm >> nTmp16; rHeader.nHeight = nTmp16;
rIStm >> rHeader.nPlanes;
rIStm >> rHeader.nBitCount;
}
else
{
// BITMAPCOREHEADER, BITMAPV5HEADER or unknown. Read as far as possible
sal_Size nUsed(sizeof(rHeader.nSize));
// read DIBInfoHeader entries
if(nUsed < rHeader.nSize) { rIStm >> rHeader.nWidth; nUsed += sizeof(rHeader.nWidth); }
if(nUsed < rHeader.nSize) { rIStm >> rHeader.nHeight; nUsed += sizeof(rHeader.nHeight); }
if(nUsed < rHeader.nSize) { rIStm >> rHeader.nPlanes; nUsed += sizeof(rHeader.nPlanes); }
if(nUsed < rHeader.nSize) { rIStm >> rHeader.nBitCount; nUsed += sizeof(rHeader.nBitCount); }
if(nUsed < rHeader.nSize) { rIStm >> rHeader.nCompression; nUsed += sizeof(rHeader.nCompression); }
if(nUsed < rHeader.nSize) { rIStm >> rHeader.nSizeImage; nUsed += sizeof(rHeader.nSizeImage); }
if(nUsed < rHeader.nSize) { rIStm >> rHeader.nXPelsPerMeter; nUsed += sizeof(rHeader.nXPelsPerMeter); }
if(nUsed < rHeader.nSize) { rIStm >> rHeader.nYPelsPerMeter; nUsed += sizeof(rHeader.nYPelsPerMeter); }
if(nUsed < rHeader.nSize) { rIStm >> rHeader.nColsUsed; nUsed += sizeof(rHeader.nColsUsed); }
if(nUsed < rHeader.nSize) { rIStm >> rHeader.nColsImportant; nUsed += sizeof(rHeader.nColsImportant); }
// read DIBV5HEADER members
if(nUsed < rHeader.nSize) { rIStm >> rHeader.nV5RedMask; nUsed += sizeof(rHeader.nV5RedMask); }
if(nUsed < rHeader.nSize) { rIStm >> rHeader.nV5GreenMask; nUsed += sizeof(rHeader.nV5GreenMask); }
if(nUsed < rHeader.nSize) { rIStm >> rHeader.nV5BlueMask; nUsed += sizeof(rHeader.nV5BlueMask); }
if(nUsed < rHeader.nSize) { rIStm >> rHeader.nV5AlphaMask; nUsed += sizeof(rHeader.nV5AlphaMask); }
if(nUsed < rHeader.nSize) { rIStm >> rHeader.nV5CSType; nUsed += sizeof(rHeader.nV5CSType); }
// read contained CIEXYZTriple's
if(nUsed < rHeader.nSize) { rIStm >> rHeader.aV5Endpoints.aXyzRed.aXyzX; nUsed += sizeof(rHeader.aV5Endpoints.aXyzRed.aXyzX); }
if(nUsed < rHeader.nSize) { rIStm >> rHeader.aV5Endpoints.aXyzRed.aXyzY; nUsed += sizeof(rHeader.aV5Endpoints.aXyzRed.aXyzY); }
if(nUsed < rHeader.nSize) { rIStm >> rHeader.aV5Endpoints.aXyzRed.aXyzZ; nUsed += sizeof(rHeader.aV5Endpoints.aXyzRed.aXyzZ); }
if(nUsed < rHeader.nSize) { rIStm >> rHeader.aV5Endpoints.aXyzGreen.aXyzX; nUsed += sizeof(rHeader.aV5Endpoints.aXyzGreen.aXyzX); }
if(nUsed < rHeader.nSize) { rIStm >> rHeader.aV5Endpoints.aXyzGreen.aXyzY; nUsed += sizeof(rHeader.aV5Endpoints.aXyzGreen.aXyzY); }
if(nUsed < rHeader.nSize) { rIStm >> rHeader.aV5Endpoints.aXyzGreen.aXyzZ; nUsed += sizeof(rHeader.aV5Endpoints.aXyzGreen.aXyzZ); }
if(nUsed < rHeader.nSize) { rIStm >> rHeader.aV5Endpoints.aXyzBlue.aXyzX; nUsed += sizeof(rHeader.aV5Endpoints.aXyzBlue.aXyzX); }
if(nUsed < rHeader.nSize) { rIStm >> rHeader.aV5Endpoints.aXyzBlue.aXyzY; nUsed += sizeof(rHeader.aV5Endpoints.aXyzBlue.aXyzY); }
if(nUsed < rHeader.nSize) { rIStm >> rHeader.aV5Endpoints.aXyzBlue.aXyzZ; nUsed += sizeof(rHeader.aV5Endpoints.aXyzBlue.aXyzZ); }
if(nUsed < rHeader.nSize) { rIStm >> rHeader.nV5GammaRed; nUsed += sizeof(rHeader.nV5GammaRed); }
if(nUsed < rHeader.nSize) { rIStm >> rHeader.nV5GammaGreen; nUsed += sizeof(rHeader.nV5GammaGreen); }
if(nUsed < rHeader.nSize) { rIStm >> rHeader.nV5GammaBlue; nUsed += sizeof(rHeader.nV5GammaBlue); }
if(nUsed < rHeader.nSize) { rIStm >> rHeader.nV5Intent; nUsed += sizeof(rHeader.nV5Intent); }
if(nUsed < rHeader.nSize) { rIStm >> rHeader.nV5ProfileData; nUsed += sizeof(rHeader.nV5ProfileData); }
if(nUsed < rHeader.nSize) { rIStm >> rHeader.nV5ProfileSize; nUsed += sizeof(rHeader.nV5ProfileSize); }
if(nUsed < rHeader.nSize) { rIStm >> rHeader.nV5Reserved; nUsed += sizeof(rHeader.nV5Reserved); }
// seek to EndPos
rIStm.Seek(aStartPos + rHeader.nSize);
}
if ( rHeader.nHeight < 0 )
{
bTopDown = true;
rHeader.nHeight *= -1;
}
else
{
bTopDown = false;
}
if ( rHeader.nWidth < 0 )
{
rIStm.SetError( SVSTREAM_FILEFORMAT_ERROR );
}
// #144105# protect a little against damaged files
if( rHeader.nSizeImage > ( 16 * static_cast< sal_uInt32 >( rHeader.nWidth * rHeader.nHeight ) ) )
{
rHeader.nSizeImage = 0;
}
return( ( rHeader.nPlanes == 1 ) && ( rIStm.GetError() == 0UL ) );
}
bool ImplReadDIBPalette( SvStream& rIStm, BitmapWriteAccess& rAcc, bool bQuad )
{
const sal_uInt16 nColors = rAcc.GetPaletteEntryCount();
const sal_uLong nPalSize = nColors * ( bQuad ? 4UL : 3UL );
BitmapColor aPalColor;
sal_uInt8* pEntries = new sal_uInt8[ nPalSize ];
rIStm.Read( pEntries, nPalSize );
sal_uInt8* pTmpEntry = pEntries;
for( sal_uInt16 i = 0; i < nColors; i++ )
{
aPalColor.SetBlue( *pTmpEntry++ );
aPalColor.SetGreen( *pTmpEntry++ );
aPalColor.SetRed( *pTmpEntry++ );
if( bQuad )
pTmpEntry++;
rAcc.SetPaletteColor( i, aPalColor );
}
delete[] pEntries;
return( rIStm.GetError() == 0UL );
}
void ImplDecodeRLE( sal_uInt8* pBuffer, DIBV5Header& rHeader, BitmapWriteAccess& rAcc, bool bRLE4 )
{
Scanline pRLE = pBuffer;
long nY = rHeader.nHeight - 1L;
const sal_uLong nWidth = rAcc.Width();
sal_uLong nCountByte;
sal_uLong nRunByte;
sal_uLong nX = 0UL;
sal_uInt8 cTmp;
bool bEndDecoding = false;
do
{
if( ( nCountByte = *pRLE++ ) == 0 )
{
nRunByte = *pRLE++;
if( nRunByte > 2 )
{
if( bRLE4 )
{
nCountByte = nRunByte >> 1;
for( sal_uLong i = 0UL; i < nCountByte; i++ )
{
cTmp = *pRLE++;
if( nX < nWidth )
rAcc.SetPixelIndex( nY, nX++, cTmp >> 4 );
if( nX < nWidth )
rAcc.SetPixelIndex( nY, nX++, cTmp & 0x0f );
}
if( nRunByte & 1 )
{
if( nX < nWidth )
rAcc.SetPixelIndex( nY, nX++, *pRLE >> 4 );
pRLE++;
}
if( ( ( nRunByte + 1 ) >> 1 ) & 1 )
pRLE++;
}
else
{
for( sal_uLong i = 0UL; i < nRunByte; i++ )
{
if( nX < nWidth )
rAcc.SetPixelIndex( nY, nX++, *pRLE );
pRLE++;
}
if( nRunByte & 1 )
pRLE++;
}
}
else if( !nRunByte )
{
nY--;
nX = 0UL;
}
else if( nRunByte == 1 )
bEndDecoding = true;
else
{
nX += *pRLE++;
nY -= *pRLE++;
}
}
else
{
cTmp = *pRLE++;
if( bRLE4 )
{
nRunByte = nCountByte >> 1;
for( sal_uLong i = 0UL; i < nRunByte; i++ )
{
if( nX < nWidth )
rAcc.SetPixelIndex( nY, nX++, cTmp >> 4 );
if( nX < nWidth )
rAcc.SetPixelIndex( nY, nX++, cTmp & 0x0f );
}
if( ( nCountByte & 1 ) && ( nX < nWidth ) )
rAcc.SetPixelIndex( nY, nX++, cTmp >> 4 );
}
else
{
for( sal_uLong i = 0UL; ( i < nCountByte ) && ( nX < nWidth ); i++ )
rAcc.SetPixelIndex( nY, nX++, cTmp );
}
}
}
while ( !bEndDecoding && ( nY >= 0L ) );
}
bool ImplReadDIBBits(SvStream& rIStm, DIBV5Header& rHeader, BitmapWriteAccess& rAcc, BitmapWriteAccess* pAccAlpha, bool bTopDown, bool& rAlphaUsed)
{
const sal_Int64 nBitsPerLine (static_cast<sal_Int64>(rHeader.nWidth) * static_cast<sal_Int64>(rHeader.nBitCount));
if (nBitsPerLine > SAL_MAX_UINT32)
return false;
const sal_uLong nAlignedWidth = AlignedWidth4Bytes(static_cast<sal_uLong>(nBitsPerLine));
sal_uInt32 nRMask(( rHeader.nBitCount == 16 ) ? 0x00007c00UL : 0x00ff0000UL);
sal_uInt32 nGMask(( rHeader.nBitCount == 16 ) ? 0x000003e0UL : 0x0000ff00UL);
sal_uInt32 nBMask(( rHeader.nBitCount == 16 ) ? 0x0000001fUL : 0x000000ffUL);
bool bNative(false);
bool bTCMask(!pAccAlpha && ((16 == rHeader.nBitCount) || (32 == rHeader.nBitCount)));
bool bRLE((RLE_8 == rHeader.nCompression && 8 == rHeader.nBitCount) || (RLE_4 == rHeader.nCompression && 4 == rHeader.nBitCount));
// Is native format?
switch(rAcc.GetScanlineFormat())
{
case( BMP_FORMAT_1BIT_MSB_PAL ):
case( BMP_FORMAT_4BIT_MSN_PAL ):
case( BMP_FORMAT_8BIT_PAL ):
case( BMP_FORMAT_24BIT_TC_BGR ):
{
bNative = ( ( static_cast< bool >(rAcc.IsBottomUp()) != bTopDown ) && !bRLE && !bTCMask && ( rAcc.GetScanlineSize() == nAlignedWidth ) );
break;
}
default:
{
break;
}
}
// Read data
if(bNative)
{
rIStm.Read(rAcc.GetBuffer(), rHeader.nHeight * nAlignedWidth);
}
else
{
// Read color mask
if(bTCMask && BITFIELDS == rHeader.nCompression)
{
rIStm.SeekRel( -12L );
rIStm >> nRMask;
rIStm >> nGMask;
rIStm >> nBMask;
}
if(bRLE)
{
if(!rHeader.nSizeImage)
{
const sal_uLong nOldPos(rIStm.Tell());
rIStm.Seek(STREAM_SEEK_TO_END);
rHeader.nSizeImage = rIStm.Tell() - nOldPos;
rIStm.Seek(nOldPos);
}
sal_uInt8* pBuffer = (sal_uInt8*)rtl_allocateMemory(rHeader.nSizeImage);
rIStm.Read((char*)pBuffer, rHeader.nSizeImage);
ImplDecodeRLE(pBuffer, rHeader, rAcc, RLE_4 == rHeader.nCompression);
rtl_freeMemory(pBuffer);
}
else
{
const long nWidth(rHeader.nWidth);
const long nHeight(rHeader.nHeight);
sal_uInt8* pBuf = new sal_uInt8[nAlignedWidth];
const long nI(bTopDown ? 1 : -1);
long nY(bTopDown ? 0 : nHeight - 1);
long nCount(nHeight);
switch(rHeader.nBitCount)
{
case( 1 ):
{
sal_uInt8* pTmp;
sal_uInt8 cTmp;
for( ; nCount--; nY += nI )
{
rIStm.Read( pTmp = pBuf, nAlignedWidth );
cTmp = *pTmp++;
for( long nX = 0L, nShift = 8L; nX < nWidth; nX++ )
{
if( !nShift )
{
nShift = 8L,
cTmp = *pTmp++;
}
rAcc.SetPixelIndex( nY, nX, (cTmp >> --nShift) & 1);
}
}
}
break;
case( 4 ):
{
sal_uInt8* pTmp;
sal_uInt8 cTmp;
for( ; nCount--; nY += nI )
{
rIStm.Read( pTmp = pBuf, nAlignedWidth );
cTmp = *pTmp++;
for( long nX = 0L, nShift = 2L; nX < nWidth; nX++ )
{
if( !nShift )
{
nShift = 2UL,
cTmp = *pTmp++;
}
rAcc.SetPixelIndex( nY, nX, (cTmp >> ( --nShift << 2UL ) ) & 0x0f);
}
}
}
break;
case( 8 ):
{
sal_uInt8* pTmp;
for( ; nCount--; nY += nI )
{
rIStm.Read( pTmp = pBuf, nAlignedWidth );
for( long nX = 0L; nX < nWidth; nX++ )
rAcc.SetPixelIndex( nY, nX, *pTmp++ );
}
}
break;
case( 16 ):
{
ColorMask aMask( nRMask, nGMask, nBMask );
BitmapColor aColor;
sal_uInt16* pTmp16;
for( ; nCount--; nY += nI )
{
rIStm.Read( (char*)( pTmp16 = (sal_uInt16*) pBuf ), nAlignedWidth );
for( long nX = 0L; nX < nWidth; nX++ )
{
aMask.GetColorFor16BitLSB( aColor, (sal_uInt8*) pTmp16++ );
rAcc.SetPixel( nY, nX, aColor );
}
}
}
break;
case( 24 ):
{
BitmapColor aPixelColor;
sal_uInt8* pTmp;
for( ; nCount--; nY += nI )
{
rIStm.Read( pTmp = pBuf, nAlignedWidth );
for( long nX = 0L; nX < nWidth; nX++ )
{
aPixelColor.SetBlue( *pTmp++ );
aPixelColor.SetGreen( *pTmp++ );
aPixelColor.SetRed( *pTmp++ );
rAcc.SetPixel( nY, nX, aPixelColor );
}
}
}
break;
case( 32 ):
{
ColorMask aMask(nRMask, nGMask, nBMask);
BitmapColor aColor;
sal_uInt32* pTmp32;
if(pAccAlpha)
{
sal_uInt8 aAlpha;
for( ; nCount--; nY += nI )
{
rIStm.Read( (char*)( pTmp32 = (sal_uInt32*) pBuf ), nAlignedWidth );
for( long nX = 0L; nX < nWidth; nX++ )
{
aMask.GetColorAndAlphaFor32Bit( aColor, aAlpha, (sal_uInt8*) pTmp32++ );
rAcc.SetPixel( nY, nX, aColor );
pAccAlpha->SetPixelIndex(nY, nX, sal_uInt8(0xff) - aAlpha);
rAlphaUsed |= bool(0xff != aAlpha);
}
}
}
else
{
for( ; nCount--; nY += nI )
{
rIStm.Read( (char*)( pTmp32 = (sal_uInt32*) pBuf ), nAlignedWidth );
for( long nX = 0L; nX < nWidth; nX++ )
{
aMask.GetColorFor32Bit( aColor, (sal_uInt8*) pTmp32++ );
rAcc.SetPixel( nY, nX, aColor );
}
}
}
}
}
delete[] pBuf;
}
}
return( rIStm.GetError() == 0UL );
}
bool ImplReadDIBBody( SvStream& rIStm, Bitmap& rBmp, Bitmap* pBmpAlpha, sal_uLong nOffset )
{
DIBV5Header aHeader;
const sal_uLong nStmPos = rIStm.Tell();
bool bRet( false );
bool bTopDown( false );
if ( ImplReadDIBInfoHeader( rIStm, aHeader, bTopDown )
&& aHeader.nWidth != 0
&& aHeader.nHeight != 0
&& aHeader.nBitCount != 0 )
{
if ( nOffset > 0 && aHeader.nSize > nOffset )
{
// Header size claims to extend into the image data.
// Looks like an error.
return false;
}
const sal_uInt16 nBitCount(discretizeBitcount(aHeader.nBitCount));
const Size aSizePixel(aHeader.nWidth, aHeader.nHeight);
BitmapPalette aDummyPal;
Bitmap aNewBmp(aSizePixel, nBitCount, &aDummyPal);
Bitmap aNewBmpAlpha;
BitmapWriteAccess* pAcc = aNewBmp.AcquireWriteAccess();
BitmapWriteAccess* pAccAlpha = 0;
bool bAlphaPossible(pBmpAlpha && aHeader.nBitCount == 32);
if(bAlphaPossible)
{
const bool bRedSet(0 != aHeader.nV5RedMask);
const bool bGreenSet(0 != aHeader.nV5GreenMask);
const bool bBlueSet(0 != aHeader.nV5BlueMask);
// some clipboard entries have alpha mask on zero to say that there is
// no alpha; do only use this when the other masks are set. The MS docu
// says that that masks are only to be set when bV5Compression is set to
// BI_BITFIELDS, but there seem to exist a wild variety of usages...
if((bRedSet || bGreenSet || bBlueSet) && (0 == aHeader.nV5AlphaMask))
{
bAlphaPossible = false;
}
}
if(bAlphaPossible)
{
aNewBmpAlpha = Bitmap(aSizePixel, 8);
pAccAlpha = aNewBmpAlpha.AcquireWriteAccess();
}
if(pAcc)
{
sal_uInt16 nColors(0);
SvStream* pIStm;
SvMemoryStream* pMemStm = NULL;
sal_uInt8* pData = NULL;
if(nBitCount <= 8)
{
if(aHeader.nColsUsed)
{
nColors = (sal_uInt16)aHeader.nColsUsed;
}
else
{
nColors = ( 1 << aHeader.nBitCount );
}
}
if(ZCOMPRESS == aHeader.nCompression)
{
ZCodec aCodec;
sal_uInt32 nCodedSize(0);
sal_uInt32 nUncodedSize(0);
sal_uLong nCodedPos(0);
// read coding information
rIStm >> nCodedSize >> nUncodedSize >> aHeader.nCompression;
pData = (sal_uInt8*) rtl_allocateMemory( nUncodedSize );
// decode buffer
nCodedPos = rIStm.Tell();
aCodec.BeginCompression();
aCodec.Read( rIStm, pData, nUncodedSize );
aCodec.EndCompression();
// skip unread bytes from coded buffer
rIStm.SeekRel( nCodedSize - ( rIStm.Tell() - nCodedPos ) );
// set decoded bytes to memory stream,
// from which we will read the bitmap data
pIStm = pMemStm = new SvMemoryStream;
pMemStm->SetBuffer( (char*) pData, nUncodedSize, false, nUncodedSize );
nOffset = 0;
}
else
{
pIStm = &rIStm;
}
// read palette
if(nColors)
{
pAcc->SetPaletteEntryCount(nColors);
ImplReadDIBPalette(*pIStm, *pAcc, aHeader.nSize != DIBCOREHEADERSIZE);
}
// read bits
bool bAlphaUsed(false);
if(!pIStm->GetError())
{
if(nOffset)
{
pIStm->SeekRel(nOffset - (pIStm->Tell() - nStmPos));
}
bRet = ImplReadDIBBits(*pIStm, aHeader, *pAcc, pAccAlpha, bTopDown, bAlphaUsed);
if(bRet && aHeader.nXPelsPerMeter && aHeader.nYPelsPerMeter)
{
MapMode aMapMode(
MAP_MM,
Point(),
Fraction(1000, aHeader.nXPelsPerMeter),
Fraction(1000, aHeader.nYPelsPerMeter));
aNewBmp.SetPrefMapMode(aMapMode);
aNewBmp.SetPrefSize(Size(aHeader.nWidth, aHeader.nHeight));
}
}
if( pData )
{
rtl_freeMemory(pData);
}
delete pMemStm;
aNewBmp.ReleaseAccess(pAcc);
if(bAlphaPossible)
{
aNewBmpAlpha.ReleaseAccess(pAccAlpha);
if(!bAlphaUsed)
{
bAlphaPossible = false;
}
}
if(bRet)
{
rBmp = aNewBmp;
if(bAlphaPossible)
{
*pBmpAlpha = aNewBmpAlpha;
}
}
}
}
return bRet;
}
bool ImplReadDIBFileHeader( SvStream& rIStm, sal_uLong& rOffset )
{
bool bRet = false;
const sal_Int64 nSavedStreamPos( rIStm.Tell() );
const sal_Int64 nStreamLength( rIStm.Seek( STREAM_SEEK_TO_END ) );
rIStm.Seek( nSavedStreamPos );
sal_uInt16 nTmp16 = 0;
rIStm >> nTmp16;
if ( ( 0x4D42 == nTmp16 ) || ( 0x4142 == nTmp16 ) )
{
sal_uInt32 nTmp32;
if ( 0x4142 == nTmp16 )
{
rIStm.SeekRel( 12L );
rIStm >> nTmp16;
rIStm.SeekRel( 8L );
rIStm >> nTmp32;
rOffset = nTmp32 - 28UL;
bRet = ( 0x4D42 == nTmp16 );
}
else // 0x4D42 == nTmp16, 'MB' from BITMAPFILEHEADER
{
rIStm.SeekRel( 8L ); // we are on bfSize member of BITMAPFILEHEADER, forward to bfOffBits
rIStm >> nTmp32; // read bfOffBits
rOffset = nTmp32 - 14UL; // adapt offset by sizeof(BITMAPFILEHEADER)
bRet = ( rIStm.GetError() == 0UL );
}
if ( rOffset >= nStreamLength )
{
// Offset claims that image starts past the end of the
// stream. Unlikely.
rIStm.SetError( SVSTREAM_FILEFORMAT_ERROR );
bRet = false;
}
}
else
rIStm.SetError( SVSTREAM_FILEFORMAT_ERROR );
return bRet;
}
bool ImplWriteDIBPalette( SvStream& rOStm, BitmapReadAccess& rAcc )
{
const sal_uInt16 nColors = rAcc.GetPaletteEntryCount();
const sal_uLong nPalSize = nColors * 4UL;
sal_uInt8* pEntries = new sal_uInt8[ nPalSize ];
sal_uInt8* pTmpEntry = pEntries;
BitmapColor aPalColor;
for( sal_uInt16 i = 0; i < nColors; i++ )
{
const BitmapColor& rPalColor = rAcc.GetPaletteColor( i );
*pTmpEntry++ = rPalColor.GetBlue();
*pTmpEntry++ = rPalColor.GetGreen();
*pTmpEntry++ = rPalColor.GetRed();
*pTmpEntry++ = 0;
}
rOStm.Write( pEntries, nPalSize );
delete[] pEntries;
return( rOStm.GetError() == 0UL );
}
bool ImplWriteRLE( SvStream& rOStm, BitmapReadAccess& rAcc, bool bRLE4 )
{
const sal_uLong nWidth = rAcc.Width();
const sal_uLong nHeight = rAcc.Height();
sal_uLong nX;
sal_uLong nSaveIndex;
sal_uLong nCount;
sal_uLong nBufCount;
sal_uInt8* pBuf = new sal_uInt8[ ( nWidth << 1 ) + 2 ];
sal_uInt8* pTmp;
sal_uInt8 cPix;
sal_uInt8 cLast;
bool bFound;
for ( long nY = nHeight - 1L; nY >= 0L; nY-- )
{
pTmp = pBuf;
nX = nBufCount = 0UL;
while( nX < nWidth )
{
nCount = 1L;
cPix = rAcc.GetPixelIndex( nY, nX++ );
while( ( nX < nWidth ) && ( nCount < 255L )
&& ( cPix == rAcc.GetPixelIndex( nY, nX ) ) )
{
nX++;
nCount++;
}
if ( nCount > 1 )
{
*pTmp++ = (sal_uInt8) nCount;
*pTmp++ = ( bRLE4 ? ( ( cPix << 4 ) | cPix ) : cPix );
nBufCount += 2;
}
else
{
cLast = cPix;
nSaveIndex = nX - 1UL;
bFound = false;
while( ( nX < nWidth ) && ( nCount < 256L )
&& ( cPix = rAcc.GetPixelIndex( nY, nX ) ) != cLast )
{
nX++; nCount++;
cLast = cPix;
bFound = true;
}
if ( bFound )
nX--;
if ( nCount > 3 )
{
*pTmp++ = 0;
*pTmp++ = (sal_uInt8) --nCount;
if( bRLE4 )
{
for ( sal_uLong i = 0; i < nCount; i++, pTmp++ )
{
*pTmp = rAcc.GetPixelIndex( nY, nSaveIndex++ ) << 4;
if ( ++i < nCount )
*pTmp |= rAcc.GetPixelIndex( nY, nSaveIndex++ );
}
nCount = ( nCount + 1 ) >> 1;
}
else
{
for( sal_uLong i = 0UL; i < nCount; i++ )
*pTmp++ = rAcc.GetPixelIndex( nY, nSaveIndex++ );
}
if ( nCount & 1 )
{
*pTmp++ = 0;
nBufCount += ( nCount + 3 );
}
else
nBufCount += ( nCount + 2 );
}
else
{
*pTmp++ = 1;
*pTmp++ = rAcc.GetPixelIndex( nY, nSaveIndex ) << (bRLE4 ? 4 : 0);
if ( nCount == 3 )
{
*pTmp++ = 1;
*pTmp++ = rAcc.GetPixelIndex( nY, ++nSaveIndex ) << ( bRLE4 ? 4 : 0 );
nBufCount += 4;
}
else
nBufCount += 2;
}
}
}
pBuf[ nBufCount++ ] = 0;
pBuf[ nBufCount++ ] = 0;
rOStm.Write( pBuf, nBufCount );
}
rOStm << (sal_uInt8) 0;
rOStm << (sal_uInt8) 1;
delete[] pBuf;
return( rOStm.GetError() == 0UL );
}
bool ImplWriteDIBBits(SvStream& rOStm, BitmapReadAccess& rAcc, BitmapReadAccess* pAccAlpha, sal_uLong nCompression, sal_uInt32& rImageSize)
{
if(!pAccAlpha && BITFIELDS == nCompression)
{
const ColorMask& rMask = rAcc.GetColorMask();
SVBT32 aVal32;
UInt32ToSVBT32( rMask.GetRedMask(), aVal32 );
rOStm.Write( (sal_uInt8*) aVal32, 4UL );
UInt32ToSVBT32( rMask.GetGreenMask(), aVal32 );
rOStm.Write( (sal_uInt8*) aVal32, 4UL );
UInt32ToSVBT32( rMask.GetBlueMask(), aVal32 );
rOStm.Write( (sal_uInt8*) aVal32, 4UL );
rImageSize = rOStm.Tell();
if( rAcc.IsBottomUp() )
rOStm.Write( rAcc.GetBuffer(), rAcc.Height() * rAcc.GetScanlineSize() );
else
{
for( long nY = rAcc.Height() - 1, nScanlineSize = rAcc.GetScanlineSize(); nY >= 0L; nY-- )
rOStm.Write( rAcc.GetScanline( nY ), nScanlineSize );
}
}
else if(!pAccAlpha && ((RLE_4 == nCompression) || (RLE_8 == nCompression)))
{
rImageSize = rOStm.Tell();
ImplWriteRLE( rOStm, rAcc, RLE_4 == nCompression );
}
else if(!nCompression)
{
// #i5xxx# Limit bitcount to 24bit, the 32 bit cases are not
// handled properly below (would have to set color masks, and
// nCompression=BITFIELDS - but color mask is not set for
// formats != *_TC_*). Note that this very problem might cause
// trouble at other places - the introduction of 32 bit RGBA
// bitmaps is relatively recent.
// #i59239# discretize bitcount for aligned width to 1,4,8,24
// (other cases are not written below)
const sal_uInt16 nBitCount(pAccAlpha ? 32 : discretizeBitcount(static_cast< sal_uInt16 >(rAcc.GetBitCount())));
const sal_uLong nAlignedWidth(AlignedWidth4Bytes(rAcc.Width() * nBitCount));
bool bNative(false);
switch(rAcc.GetScanlineFormat())
{
case( BMP_FORMAT_1BIT_MSB_PAL ):
case( BMP_FORMAT_4BIT_MSN_PAL ):
case( BMP_FORMAT_8BIT_PAL ):
case( BMP_FORMAT_24BIT_TC_BGR ):
{
if(!pAccAlpha && rAcc.IsBottomUp() && (rAcc.GetScanlineSize() == nAlignedWidth))
{
bNative = true;
}
break;
}
default:
{
break;
}
}
rImageSize = rOStm.Tell();
if(bNative)
{
rOStm.Write(rAcc.GetBuffer(), nAlignedWidth * rAcc.Height());
}
else
{
const long nWidth(rAcc.Width());
const long nHeight(rAcc.Height());
sal_uInt8* pBuf = new sal_uInt8[ nAlignedWidth ];
sal_uInt8* pTmp(0);
sal_uInt8 cTmp(0);
switch( nBitCount )
{
case( 1 ):
{
for( long nY = nHeight - 1; nY >= 0L; nY-- )
{
pTmp = pBuf;
cTmp = 0;
for( long nX = 0L, nShift = 8L; nX < nWidth; nX++ )
{
if( !nShift )
{
nShift = 8L;
*pTmp++ = cTmp;
cTmp = 0;
}
cTmp |= rAcc.GetPixelIndex( nY, nX ) << --nShift;
}
*pTmp = cTmp;
rOStm.Write( pBuf, nAlignedWidth );
}
}
break;
case( 4 ):
{
for( long nY = nHeight - 1; nY >= 0L; nY-- )
{
pTmp = pBuf;
cTmp = 0;
for( long nX = 0L, nShift = 2L; nX < nWidth; nX++ )
{
if( !nShift )
{
nShift = 2L;
*pTmp++ = cTmp;
cTmp = 0;
}
cTmp |= rAcc.GetPixelIndex( nY, nX ) << ( --nShift << 2L );
}
*pTmp = cTmp;
rOStm.Write( pBuf, nAlignedWidth );
}
}
break;
case( 8 ):
{
for( long nY = nHeight - 1; nY >= 0L; nY-- )
{
pTmp = pBuf;
for( long nX = 0L; nX < nWidth; nX++ )
*pTmp++ = rAcc.GetPixelIndex( nY, nX );
rOStm.Write( pBuf, nAlignedWidth );
}
}
break;
// #i59239# fallback to 24 bit format, if bitcount is non-default
default:
// FALLTHROUGH intended
case( 24 ):
{
BitmapColor aPixelColor;
const bool bWriteAlpha(32 == nBitCount && pAccAlpha);
for( long nY = nHeight - 1; nY >= 0L; nY-- )
{
pTmp = pBuf;
for( long nX = 0L; nX < nWidth; nX++ )
{
// when alpha is used, this may be non-24bit main bitmap, so use GetColor
// instead of GetPixel to ensure RGB value
aPixelColor = rAcc.GetColor( nY, nX );
*pTmp++ = aPixelColor.GetBlue();
*pTmp++ = aPixelColor.GetGreen();
*pTmp++ = aPixelColor.GetRed();
if(bWriteAlpha)
{
if(pAccAlpha)
{
*pTmp++ = (sal_uInt8)0xff - (sal_uInt8)pAccAlpha->GetPixelIndex( nY, nX );
}
else
{
*pTmp++ = (sal_uInt8)0xff;
}
}
}
rOStm.Write( pBuf, nAlignedWidth );
}
}
break;
}
delete[] pBuf;
}
}
rImageSize = rOStm.Tell() - rImageSize;
return (!rOStm.GetError());
}
bool ImplWriteDIBBody(const Bitmap& rBitmap, SvStream& rOStm, BitmapReadAccess& rAcc, BitmapReadAccess* pAccAlpha, bool bCompressed)
{
const MapMode aMapPixel(MAP_PIXEL);
DIBV5Header aHeader;
sal_uLong nImageSizePos(0);
sal_uLong nEndPos(0);
sal_uInt32 nCompression(COMPRESS_NONE);
bool bRet(false);
aHeader.nSize = pAccAlpha ? DIBV5HEADERSIZE : DIBINFOHEADERSIZE; // size dependent on CF_DIB type to use
aHeader.nWidth = rAcc.Width();
aHeader.nHeight = rAcc.Height();
aHeader.nPlanes = 1;
if(!pAccAlpha && isBitfieldCompression(rAcc.GetScanlineFormat()))
{
aHeader.nBitCount = (BMP_FORMAT_16BIT_TC_LSB_MASK == rAcc.GetScanlineFormat()) ? 16 : 32;
aHeader.nSizeImage = rAcc.Height() * rAcc.GetScanlineSize();
nCompression = BITFIELDS;
}
else
{
// #i5xxx# Limit bitcount to 24bit, the 32 bit cases are
// not handled properly below (would have to set color
// masks, and nCompression=BITFIELDS - but color mask is
// not set for formats != *_TC_*). Note that this very
// problem might cause trouble at other places - the
// introduction of 32 bit RGBA bitmaps is relatively
// recent.
// #i59239# discretize bitcount to 1,4,8,24 (other cases
// are not written below)
const sal_uInt16 nBitCount(pAccAlpha ? 32 : discretizeBitcount(static_cast< sal_uInt16 >(rAcc.GetBitCount())));
aHeader.nBitCount = nBitCount;
aHeader.nSizeImage = rAcc.Height() * AlignedWidth4Bytes(rAcc.Width() * aHeader.nBitCount);
if(bCompressed)
{
if(4 == nBitCount)
{
nCompression = RLE_4;
}
else if(8 == nBitCount)
{
nCompression = RLE_8;
}
}
}
if((rOStm.GetCompressMode() & COMPRESSMODE_ZBITMAP) && (rOStm.GetVersion() >= SOFFICE_FILEFORMAT_40))
{
aHeader.nCompression = ZCOMPRESS;
}
else
{
aHeader.nCompression = nCompression;
}
if(rBitmap.GetPrefSize().Width() && rBitmap.GetPrefSize().Height() && (rBitmap.GetPrefMapMode() != aMapPixel))
{
// #i48108# Try to recover xpels/ypels as previously stored on
// disk. The problem with just converting maPrefSize to 100th
// mm and then relating that to the bitmap pixel size is that
// MapMode is integer-based, and suffers from roundoffs,
// especially if maPrefSize is small. Trying to circumvent
// that by performing part of the math in floating point.
const Size aScale100000(OutputDevice::LogicToLogic(Size(100000L, 100000L), MAP_100TH_MM, rBitmap.GetPrefMapMode()));
const double fBmpWidthM((double)rBitmap.GetPrefSize().Width() / aScale100000.Width());
const double fBmpHeightM((double)rBitmap.GetPrefSize().Height() / aScale100000.Height());
if(!basegfx::fTools::equalZero(fBmpWidthM) && !basegfx::fTools::equalZero(fBmpHeightM))
{
aHeader.nXPelsPerMeter = basegfx::fround(rAcc.Width() / fabs(fBmpWidthM));
aHeader.nYPelsPerMeter = basegfx::fround(rAcc.Height() / fabs(fBmpHeightM));
}
}
aHeader.nColsUsed = ((!pAccAlpha && aHeader.nBitCount <= 8) ? rAcc.GetPaletteEntryCount() : 0);
aHeader.nColsImportant = 0;
rOStm << aHeader.nSize;
rOStm << aHeader.nWidth;
rOStm << aHeader.nHeight;
rOStm << aHeader.nPlanes;
rOStm << aHeader.nBitCount;
rOStm << aHeader.nCompression;
nImageSizePos = rOStm.Tell();
rOStm.SeekRel( sizeof( aHeader.nSizeImage ) );
rOStm << aHeader.nXPelsPerMeter;
rOStm << aHeader.nYPelsPerMeter;
rOStm << aHeader.nColsUsed;
rOStm << aHeader.nColsImportant;
if(pAccAlpha) // only write DIBV5 when asked to do so
{
aHeader.nV5CSType = 0x57696E20; // LCS_WINDOWS_COLOR_SPACE
aHeader.nV5Intent = 0x00000004; // LCS_GM_IMAGES
rOStm << aHeader.nV5RedMask;
rOStm << aHeader.nV5GreenMask;
rOStm << aHeader.nV5BlueMask;
rOStm << aHeader.nV5AlphaMask;
rOStm << aHeader.nV5CSType;
rOStm << aHeader.aV5Endpoints.aXyzRed.aXyzX;
rOStm << aHeader.aV5Endpoints.aXyzRed.aXyzY;
rOStm << aHeader.aV5Endpoints.aXyzRed.aXyzZ;
rOStm << aHeader.aV5Endpoints.aXyzGreen.aXyzX;
rOStm << aHeader.aV5Endpoints.aXyzGreen.aXyzY;
rOStm << aHeader.aV5Endpoints.aXyzGreen.aXyzZ;
rOStm << aHeader.aV5Endpoints.aXyzBlue.aXyzX;
rOStm << aHeader.aV5Endpoints.aXyzBlue.aXyzY;
rOStm << aHeader.aV5Endpoints.aXyzBlue.aXyzZ;
rOStm << aHeader.nV5GammaRed;
rOStm << aHeader.nV5GammaGreen;
rOStm << aHeader.nV5GammaBlue;
rOStm << aHeader.nV5Intent;
rOStm << aHeader.nV5ProfileData;
rOStm << aHeader.nV5ProfileSize;
rOStm << aHeader.nV5Reserved;
}
if(ZCOMPRESS == aHeader.nCompression)
{
ZCodec aCodec;
SvMemoryStream aMemStm(aHeader.nSizeImage + 4096, 65535);
sal_uLong nCodedPos(rOStm.Tell());
sal_uLong nLastPos(0);
sal_uInt32 nCodedSize(0);
sal_uInt32 nUncodedSize(0);
// write uncoded data palette
if(aHeader.nColsUsed)
{
ImplWriteDIBPalette(aMemStm, rAcc);
}
// write uncoded bits
bRet = ImplWriteDIBBits(aMemStm, rAcc, pAccAlpha, nCompression, aHeader.nSizeImage);
// get uncoded size
nUncodedSize = aMemStm.Tell();
// seek over compress info
rOStm.SeekRel(12);
// write compressed data
aCodec.BeginCompression(3);
aCodec.Write(rOStm, (sal_uInt8*)aMemStm.GetData(), nUncodedSize);
aCodec.EndCompression();
// update compress info ( coded size, uncoded size, uncoded compression )
nLastPos = rOStm.Tell();
nCodedSize = nLastPos - nCodedPos - 12;
rOStm.Seek(nCodedPos);
rOStm << nCodedSize << nUncodedSize << nCompression;
rOStm.Seek(nLastPos);
if(bRet)
{
bRet = (ERRCODE_NONE == rOStm.GetError());
}
}
else
{
if(aHeader.nColsUsed)
{
ImplWriteDIBPalette(rOStm, rAcc);
}
bRet = ImplWriteDIBBits(rOStm, rAcc, pAccAlpha, aHeader.nCompression, aHeader.nSizeImage);
}
nEndPos = rOStm.Tell();
rOStm.Seek(nImageSizePos);
rOStm << aHeader.nSizeImage;
rOStm.Seek(nEndPos);
return bRet;
}
bool ImplWriteDIBFileHeader(SvStream& rOStm, BitmapReadAccess& rAcc, bool bUseDIBV5)
{
const sal_uInt32 nPalCount((rAcc.HasPalette() ? rAcc.GetPaletteEntryCount() : isBitfieldCompression(rAcc.GetScanlineFormat()) ? 3UL : 0UL));
const sal_uInt32 nOffset(14 + (bUseDIBV5 ? DIBV5HEADERSIZE : DIBINFOHEADERSIZE) + nPalCount * 4UL);
rOStm << (sal_uInt16)0x4D42; // 'MB' from BITMAPFILEHEADER
rOStm << (sal_uInt32)(nOffset + (rAcc.Height() * rAcc.GetScanlineSize()));
rOStm << (sal_uInt16)0;
rOStm << (sal_uInt16)0;
rOStm << nOffset;
return( rOStm.GetError() == 0UL );
}
//////////////////////////////////////////////////////////////////////////////
bool ImplReadDIB(
Bitmap& rTarget, Bitmap*
pTargetAlpha,
SvStream& rIStm,
bool bFileHeader)
{
const sal_uInt16 nOldFormat(rIStm.GetNumberFormatInt());
const sal_uLong nOldPos(rIStm.Tell());
sal_uLong nOffset(0UL);
bool bRet(false);
rIStm.SetNumberFormatInt(NUMBERFORMAT_INT_LITTLEENDIAN);
if(bFileHeader)
{
if(ImplReadDIBFileHeader(rIStm, nOffset))
{
bRet = ImplReadDIBBody(rIStm, rTarget, nOffset >= DIBV5HEADERSIZE ? pTargetAlpha : 0, nOffset);
}
}
else
{
bRet = ImplReadDIBBody(rIStm, rTarget, 0, nOffset);
}
if(!bRet)
{
if(!rIStm.GetError())
{
rIStm.SetError(SVSTREAM_GENERALERROR);
}
rIStm.Seek(nOldPos);
}
rIStm.SetNumberFormatInt(nOldFormat);
return bRet;
}
bool ImplWriteDIB(
const Bitmap& rSource,
const Bitmap* pSourceAlpha,
SvStream& rOStm,
bool bCompressed,
bool bFileHeader)
{
const Size aSizePix(rSource.GetSizePixel());
bool bRet(false);
if(aSizePix.Width() && aSizePix.Height())
{
BitmapReadAccess* pAcc = const_cast< Bitmap& >(rSource).AcquireReadAccess();
BitmapReadAccess* pAccAlpha = 0;
const sal_uInt16 nOldFormat(rOStm.GetNumberFormatInt());
const sal_uLong nOldPos(rOStm.Tell());
if(pSourceAlpha)
{
const Size aSizePixAlpha(pSourceAlpha->GetSizePixel());
if(aSizePixAlpha == aSizePix)
{
pAccAlpha = const_cast< Bitmap* >(pSourceAlpha)->AcquireReadAccess();
}
else
{
OSL_ENSURE(false, "WriteDIB got an alpha channel, but it's pixel size differs from the base bitmap (!)");
}
}
rOStm.SetNumberFormatInt(NUMBERFORMAT_INT_LITTLEENDIAN);
if(pAcc)
{
if(bFileHeader)
{
if(ImplWriteDIBFileHeader(rOStm, *pAcc, 0 != pSourceAlpha))
{
bRet = ImplWriteDIBBody(rSource, rOStm, *pAcc, pAccAlpha, bCompressed);
}
}
else
{
bRet = ImplWriteDIBBody(rSource, rOStm, *pAcc, pAccAlpha, bCompressed);
}
const_cast< Bitmap& >(rSource).ReleaseAccess(pAcc);
if(pAccAlpha)
{
const_cast< Bitmap* >(pSourceAlpha)->ReleaseAccess(pAccAlpha);
}
}
if(!bRet)
{
rOStm.SetError(SVSTREAM_GENERALERROR);
rOStm.Seek(nOldPos);
}
rOStm.SetNumberFormatInt(nOldFormat);
}
return bRet;
}
//////////////////////////////////////////////////////////////////////////////
bool ReadDIB(
Bitmap& rTarget,
SvStream& rIStm,
bool bFileHeader)
{
return ImplReadDIB(rTarget, 0, rIStm, bFileHeader);
}
bool ReadDIBBitmapEx(
BitmapEx& rTarget,
SvStream& rIStm)
{
Bitmap aBmp;
bool bRetval(ImplReadDIB(aBmp, 0, rIStm, true) && !rIStm.GetError());
if(bRetval)
{
// base bitmap was read, set as return value and try to read alpha extra-data
const sal_uLong nStmPos(rIStm.Tell());
sal_uInt32 nMagic1(0);
sal_uInt32 nMagic2(0);
rTarget = BitmapEx(aBmp);
rIStm >> nMagic1 >> nMagic2;
bRetval = (0x25091962 == nMagic1) && (0xACB20201 == nMagic2) && !rIStm.GetError();
if(bRetval)
{
sal_uInt8 bTransparent(false);
rIStm >> bTransparent;
bRetval = !rIStm.GetError();
if(bRetval)
{
if((sal_uInt8)TRANSPARENT_BITMAP == bTransparent)
{
Bitmap aMask;
bRetval = ImplReadDIB(aMask, 0, rIStm, true);
if(bRetval)
{
if(!!aMask)
{
// do we have an alpha mask?
if((8 == aMask.GetBitCount()) && aMask.HasGreyPalette())
{
AlphaMask aAlpha;
// create alpha mask quickly (without greyscale conversion)
aAlpha.ImplSetBitmap(aMask);
rTarget = BitmapEx(aBmp, aAlpha);
}
else
{
rTarget = BitmapEx(aBmp, aMask);
}
}
}
}
else if((sal_uInt8)TRANSPARENT_COLOR == bTransparent)
{
Color aTransparentColor;
rIStm >> aTransparentColor;
bRetval = !rIStm.GetError();
if(bRetval)
{
rTarget = BitmapEx(aBmp, aTransparentColor);
}
}
}
}
if(!bRetval)
{
// alpha extra data could not be read; reset, but use base bitmap as result
rIStm.ResetError();
rIStm.Seek(nStmPos);
bRetval = true;
}
}
return bRetval;
}
bool ReadDIBV5(
Bitmap& rTarget,
Bitmap& rTargetAlpha,
SvStream& rIStm)
{
return ImplReadDIB(rTarget, &rTargetAlpha, rIStm, true);
}
//////////////////////////////////////////////////////////////////////////////
bool WriteDIB(
const Bitmap& rSource,
SvStream& rOStm,
bool bCompressed,
bool bFileHeader)
{
return ImplWriteDIB(rSource, 0, rOStm, bCompressed, bFileHeader);
}
bool WriteDIBBitmapEx(
const BitmapEx& rSource,
SvStream& rOStm)
{
if(ImplWriteDIB(rSource.GetBitmap(), 0, rOStm, true, true))
{
rOStm << (sal_uInt32)0x25091962;
rOStm << (sal_uInt32)0xACB20201;
rOStm << (sal_uInt8)rSource.eTransparent;
if(TRANSPARENT_BITMAP == rSource.eTransparent)
{
return ImplWriteDIB(rSource.aMask, 0, rOStm, true, true);
}
else if(TRANSPARENT_COLOR == rSource.eTransparent)
{
rOStm << rSource.aTransparentColor;
return true;
}
}
return false;
}
bool WriteDIBV5(
const Bitmap& rSource,
const Bitmap& rSourceAlpha,
SvStream& rOStm)
{
return ImplWriteDIB(rSource, &rSourceAlpha, rOStm, false, true);
}
//////////////////////////////////////////////////////////////////////////////
// eof