blob: 5df723fc6d90b6c480d53dad5578eae5e0158121 [file] [log] [blame]
/**************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_tools.hxx"
#include <tlgen.hxx>
#include "hashtbl.hxx"
#include <algorithm>
// -------------------------------------------------------------
// class HashItem
//
class HashItem
{
enum ETag { TAG_EMPTY, TAG_USED, TAG_DELETED };
void* m_pObject;
ETag m_Tag;
String m_Key;
public:
HashItem() { m_Tag = TAG_EMPTY; m_pObject = NULL; }
BOOL IsDeleted() const
{ return m_Tag == TAG_DELETED; }
BOOL IsEmpty() const
{ return m_Tag == TAG_DELETED || m_Tag == TAG_EMPTY; }
BOOL IsFree() const
{ return m_Tag == TAG_EMPTY; }
BOOL IsUsed() const
{ return m_Tag == TAG_USED; }
void Delete()
{ m_Tag = TAG_DELETED; m_Key = ""; m_pObject = NULL; }
String const& GetKey() const
{ return m_Key; }
void* GetObject() const
{ return m_pObject; }
void SetObject(String const Key, void *pObject)
{ m_Tag = TAG_USED; m_Key = Key; m_pObject = pObject; }
};
// #define MIN(a,b) (a)<(b)?(a):(b)
// #define MAX(a,b) (a)>(b)?(a):(b)
// -------------------------------------------------------------
// class HashTable
//
/*static*/ double HashTable::m_defMaxLoadFactor = 0.8;
/*static*/ double HashTable::m_defDefGrowFactor = 2.0;
HashTable::HashTable(ULONG lSize, BOOL bOwner, double dMaxLoadFactor, double dGrowFactor)
{
m_lSize = lSize;
m_bOwner = bOwner;
m_lElem = 0;
m_dMaxLoadFactor = std::max(0.5,std::min(1.0,dMaxLoadFactor)); // 0.5 ... 1.0
m_dGrowFactor = std::max(1.3,(5.0,dGrowFactor)); // 1.3 ... 5.0
m_pData = new HashItem [lSize];
// Statistik
#ifdef DBG_UTIL
m_aStatistic.m_lSingleHash = 0;
m_aStatistic.m_lDoubleHash = 0;
m_aStatistic.m_lProbe = 0;
#endif
}
HashTable::~HashTable()
{
// Wenn die HashTable der Owner der Objecte ist,
// müssen die Destruktoren separat gerufen werden.
// Dies geschieht über die virtuelle Methode OnDeleteObject()
//
// Problem: Virtuelle Funktionen sind im Destructor nicht virtuell!!
// Der Code muß deshalb ins Macro
/*
if (m_bOwner)
{
for (ULONG i=0; i<GetSize(); i++)
{
void *pObject = GetObjectAt(i);
if (pObject != NULL)
OnDeleteObject(pObject());
}
}
*/
// Speicher für HashItems freigeben
delete [] m_pData;
}
void* HashTable::GetObjectAt(ULONG lPos) const
// Gibt Objekt zurück, wenn es eines gibt, sonst NULL;
{
DBG_ASSERT(lPos<m_lSize, "HashTable::GetObjectAt()");
HashItem *pItem = &m_pData[lPos];
return pItem->IsUsed() ? pItem->GetObject() : NULL;
}
void HashTable::OnDeleteObject(void*)
{
DBG_ERROR("HashTable::OnDeleteObject(void*) nicht überladen");
}
ULONG HashTable::Hash(String const& Key) const
{
/*
ULONG lHash = 0;
ULONG i,n;
for (i=0,n=Key.Len(); i<n; i++)
{
lHash *= 256L;
lHash += (ULONG)(USHORT)Key.GetStr()[i];
lHash %= m_lSize;
}
return lHash;
*/
// Hashfunktion von P.J. Weinberger
// aus dem "Drachenbuch" von Aho/Sethi/Ullman
ULONG i,n;
ULONG h = 0;
ULONG g = 0;
for (i=0,n=Key.Len(); i<n; i++)
{
h = (h<<4) + (ULONG)(USHORT)Key.GetStr()[i];
g = h & 0xf0000000;
if (g != 0)
{
h = h ^ (g >> 24);
h = h ^ g;
}
}
return h % m_lSize;
}
ULONG HashTable::DHash(String const& Key, ULONG lOldHash) const
{
ULONG lHash = lOldHash;
ULONG i,n;
for (i=0,n=Key.Len(); i<n; i++)
{
lHash *= 256L;
lHash += (ULONG)(USHORT)Key.GetStr()[i];
lHash %= m_lSize;
}
return lHash;
/* return
(
lHash
+ (char)Key.GetStr()[0] * 256
+ (char)Key.GetStr()[Key.Len()-1]
+ 1
)
% m_lSize;
*/
}
ULONG HashTable::Probe(ULONG lPos) const
// gibt den Folgewert von lPos zurück
{
lPos++; if (lPos==m_lSize) lPos=0;
return lPos;
}
BOOL HashTable::IsFull() const
{
return m_lElem>=m_lSize;
}
BOOL HashTable::Insert(String const& Key, void* pObject)
// pre: Key ist nicht im Dictionary enthalten, sonst return FALSE
// Dictionary ist nicht voll, sonst return FALSE
// post: pObject ist unter Key im Dictionary; m_nElem wurde erhöht
{
SmartGrow();
if (IsFull())
{
DBG_ERROR("HashTable::Insert() is full");
return FALSE;
}
if (FindPos(Key) != NULL )
return FALSE;
ULONG lPos = Hash(Key);
HashItem *pItem = &m_pData[lPos];
// first hashing
//
if (pItem->IsEmpty())
{
pItem->SetObject(Key, pObject);
m_lElem++;
#ifdef DBG_UTIL
m_aStatistic.m_lSingleHash++;
#endif
return TRUE;
}
// double hashing
//
lPos = DHash(Key,lPos);
pItem = &m_pData[lPos];
if (pItem->IsEmpty())
{
pItem->SetObject(Key, pObject);
m_lElem++;
#ifdef DBG_UTIL
m_aStatistic.m_lDoubleHash++;
#endif
return TRUE;
}
// linear probing
//
do
{
#ifdef DBG_UTIL
m_aStatistic.m_lProbe++;
#endif
lPos = Probe(lPos);
pItem = &m_pData[lPos];
}
while(!pItem->IsEmpty());
pItem->SetObject(Key, pObject);
m_lElem++;
return TRUE;
}
HashItem* HashTable::FindPos(String const& Key) const
// sucht den Key; gibt Refrenz auf den Eintrag (gefunden)
// oder NULL (nicht gefunden) zurück
//
// pre: -
// post: -
{
// first hashing
//
ULONG lPos = Hash(Key);
HashItem *pItem = &m_pData[lPos];
if (pItem->IsUsed()
&& pItem->GetKey() == Key)
{
return pItem;
}
// double hashing
//
if (pItem->IsDeleted() || pItem->IsUsed())
{
lPos = DHash(Key,lPos);
pItem = &m_pData[lPos];
if (pItem->IsUsed()
&& pItem->GetKey() == Key)
{
return pItem;
}
// linear probing
//
if (pItem->IsDeleted() || pItem->IsUsed())
{
ULONG n = 0;
BOOL bFound = FALSE;
BOOL bEnd = FALSE;
do
{
n++;
lPos = Probe(lPos);
pItem = &m_pData[lPos];
bFound = pItem->IsUsed()
&& pItem->GetKey() == Key;
bEnd = !(n<m_lSize || pItem->IsFree());
}
while(!bFound && !bEnd);
return bFound ? pItem : NULL;
}
}
// nicht gefunden
//
return NULL;
}
void* HashTable::Find(String const& Key) const
// Gibt Verweis des Objektes zurück, das unter Key abgespeichert ist,
// oder NULL wenn nicht vorhanden.
//
// pre: -
// post: -
{
HashItem *pItem = FindPos(Key);
if (pItem != NULL
&& pItem->GetKey() == Key)
return pItem->GetObject();
else
return NULL;
}
void* HashTable::Delete(String const& Key)
// Löscht Objekt, das unter Key abgespeichert ist und gibt Verweis
// darauf zurück.
// Gibt NULL zurück, wenn Key nicht vorhanden ist.
//
// pre: -
// post: Objekt ist nicht mehr enthalten; m_lElem dekrementiert
// Wenn die HashTable der Owner ist, wurde das Object gelöscht
{
HashItem *pItem = FindPos(Key);
if (pItem != NULL
&& pItem->GetKey() == Key)
{
void* pObject = pItem->GetObject();
if (m_bOwner)
OnDeleteObject(pObject);
pItem->Delete();
m_lElem--;
return pObject;
}
else
{
return NULL;
}
}
double HashTable::CalcLoadFactor() const
// prozentuale Belegung der Hashtabelle berechnen
{
return double(m_lElem) / double(m_lSize);
}
void HashTable::SmartGrow()
// Achtung: da die Objekte umkopiert werden, darf die OnDeleteObject-Methode
// nicht gerufen werden
{
double dLoadFactor = CalcLoadFactor();
if (dLoadFactor <= m_dMaxLoadFactor)
return; // nothing to grow
ULONG lOldSize = m_lSize; // alte Daten sichern
HashItem* pOldData = m_pData;
m_lSize = ULONG (m_dGrowFactor * m_lSize); // neue Größe
m_pData = new HashItem[m_lSize]; // neue Daten holen
// kein Speicher:
// Zustand "Tabelle voll" wird in Insert abgefangen
//
if (m_pData == NULL)
{
m_lSize = lOldSize;
m_pData = pOldData;
return;
}
m_lElem = 0; // noch keine neuen Daten
// Umkopieren der Daten
//
for (ULONG i=0; i<lOldSize; i++)
{
HashItem *pItem = &pOldData[i];
if (pItem->IsUsed())
Insert(pItem->GetKey(),pItem->GetObject());
}
delete [] pOldData;
}
// Iterator ---------------------------------------------------------
//
HashTableIterator::HashTableIterator(HashTable const& aTable)
: m_aTable(aTable)
{
m_lAt = 0;
}
void* HashTableIterator::GetFirst()
{
m_lAt = 0;
return FindValidObject(TRUE /* forward */);
}
void* HashTableIterator::GetLast()
{
m_lAt = m_aTable.GetSize() -1;
return FindValidObject(FALSE /* backward */);
}
void* HashTableIterator::GetNext()
{
if (m_lAt+1 >= m_aTable.GetSize())
return NULL;
m_lAt++;
return FindValidObject(TRUE /* forward */);
}
void* HashTableIterator::GetPrev()
{
if (m_lAt <= 0)
return NULL;
m_lAt--;
return FindValidObject(FALSE /* backward */);
}
void* HashTableIterator::FindValidObject(BOOL bForward)
// Sucht nach einem vorhandenen Objekt ab der aktuellen
// Position.
//
// pre: ab inkl. m_lAt soll die Suche beginnen
// post: if not found then
// if bForward == TRUE then
// m_lAt == m_aTable.GetSize() -1
// else
// m_lAt == 0
// else
// m_lAt ist die gefundene Position
{
void *pObject = m_aTable.GetObjectAt(m_lAt);
if (pObject != NULL)
return pObject;
while (pObject == NULL
&& (bForward ? ((m_lAt+1) < m_aTable.GetSize())
: m_lAt > 0))
{
if (bForward)
m_lAt++;
else
m_lAt--;
pObject = m_aTable.GetObjectAt(m_lAt);
}
#ifdef DBG_UTIL
if (pObject == NULL)
{
DBG_ASSERT(bForward ? m_lAt == m_aTable.GetSize() -1 : m_lAt == 0,
"HashTableIterator::FindValidObject()");
}
#endif
return pObject;
}