blob: 97f9a3f4eb349bba0482cee6646c9dcc2c80d07a [file] [log] [blame]
/**************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_svx.hxx"
#include <svx/svdoedge.hxx>
#include <svx/xpool.hxx>
#include <svx/xpoly.hxx>
#include <svx/svdattrx.hxx>
#include <svx/svdpool.hxx>
#include <svx/svdmodel.hxx>
#include <svx/svdpage.hxx>
#include <svx/svdpagv.hxx>
#include <svx/svdview.hxx>
#include <svx/svddrag.hxx>
#include <svx/svddrgv.hxx>
#include "svddrgm1.hxx"
#include <svx/svdhdl.hxx>
#include <svx/svdtrans.hxx>
#include <svx/svdetc.hxx>
#include "svx/svdglob.hxx" // StringCache
#include "svx/svdstr.hrc" // Objektname
#include <svl/style.hxx>
#include <svl/smplhint.hxx>
#include <editeng/eeitem.hxx>
#include "svdoimp.hxx"
#include <svx/sdr/properties/connectorproperties.hxx>
#include <svx/sdr/contact/viewcontactofsdredgeobj.hxx>
#include <basegfx/polygon/b2dpolygon.hxx>
#include <basegfx/polygon/b2dpolygontools.hxx>
#include <basegfx/matrix/b2dhommatrix.hxx>
#include <svx/sdrhittesthelper.hxx>
////////////////////////////////////////////////////////////////////////////////////////////////////
SdrObjConnection::~SdrObjConnection()
{
}
void SdrObjConnection::ResetVars()
{
pObj=NULL;
nConId=0;
nXDist=0;
nYDist=0;
bBestConn=sal_True;
bBestVertex=sal_True;
bXDistOvr=sal_False;
bYDistOvr=sal_False;
bAutoVertex=sal_False;
bAutoCorner=sal_False;
}
FASTBOOL SdrObjConnection::TakeGluePoint(SdrGluePoint& rGP, FASTBOOL bSetAbsPos) const
{
FASTBOOL bRet=sal_False;
if (pObj!=NULL) { // Ein Obj muss schon angedockt sein!
if (bAutoVertex) {
rGP=pObj->GetVertexGluePoint(nConId);
bRet=sal_True;
} else if (bAutoCorner) {
rGP=pObj->GetCornerGluePoint(nConId);
bRet=sal_True;
} else {
const SdrGluePointList* pGPL=pObj->GetGluePointList();
if (pGPL!=NULL) {
sal_uInt16 nNum=pGPL->FindGluePoint(nConId);
if (nNum!=SDRGLUEPOINT_NOTFOUND) {
rGP=(*pGPL)[nNum];
bRet=sal_True;
}
}
}
}
if (bRet && bSetAbsPos) {
Point aPt(rGP.GetAbsolutePos(*pObj));
aPt+=aObjOfs;
rGP.SetPos(aPt);
}
return bRet;
}
Point& SdrEdgeInfoRec::ImpGetLineVersatzPoint(SdrEdgeLineCode eLineCode)
{
switch (eLineCode) {
case OBJ1LINE2 : return aObj1Line2;
case OBJ1LINE3 : return aObj1Line3;
case OBJ2LINE2 : return aObj2Line2;
case OBJ2LINE3 : return aObj2Line3;
case MIDDLELINE: return aMiddleLine;
} // switch
return aMiddleLine;
}
sal_uInt16 SdrEdgeInfoRec::ImpGetPolyIdx(SdrEdgeLineCode eLineCode, const XPolygon& rXP) const
{
switch (eLineCode) {
case OBJ1LINE2 : return 1;
case OBJ1LINE3 : return 2;
case OBJ2LINE2 : return rXP.GetPointCount()-3;
case OBJ2LINE3 : return rXP.GetPointCount()-4;
case MIDDLELINE: return nMiddleLine;
} // switch
return 0;
}
FASTBOOL SdrEdgeInfoRec::ImpIsHorzLine(SdrEdgeLineCode eLineCode, const XPolygon& rXP) const
{
sal_uInt16 nIdx=ImpGetPolyIdx(eLineCode,rXP);
FASTBOOL bHorz=nAngle1==0 || nAngle1==18000;
if (eLineCode==OBJ2LINE2 || eLineCode==OBJ2LINE3) {
nIdx=rXP.GetPointCount()-nIdx; // #36314#
bHorz=nAngle2==0 || nAngle2==18000; // #52000#
}
if ((nIdx & 1)==1) bHorz=!bHorz;
return bHorz;
}
void SdrEdgeInfoRec::ImpSetLineVersatz(SdrEdgeLineCode eLineCode, const XPolygon& rXP, long nVal)
{
Point& rPt=ImpGetLineVersatzPoint(eLineCode);
if (ImpIsHorzLine(eLineCode,rXP)) rPt.Y()=nVal;
else rPt.X()=nVal;
}
long SdrEdgeInfoRec::ImpGetLineVersatz(SdrEdgeLineCode eLineCode, const XPolygon& rXP) const
{
const Point& rPt=ImpGetLineVersatzPoint(eLineCode);
if (ImpIsHorzLine(eLineCode,rXP)) return rPt.Y();
else return rPt.X();
}
//////////////////////////////////////////////////////////////////////////////
// BaseProperties section
sdr::properties::BaseProperties* SdrEdgeObj::CreateObjectSpecificProperties()
{
return new sdr::properties::ConnectorProperties(*this);
}
//////////////////////////////////////////////////////////////////////////////
// DrawContact section
sdr::contact::ViewContact* SdrEdgeObj::CreateObjectSpecificViewContact()
{
return new sdr::contact::ViewContactOfSdrEdgeObj(*this);
}
//////////////////////////////////////////////////////////////////////////////
TYPEINIT1(SdrEdgeObj,SdrTextObj);
SdrEdgeObj::SdrEdgeObj()
: SdrTextObj(),
nNotifyingCount(0),
bEdgeTrackDirty(sal_False),
bEdgeTrackUserDefined(sal_False),
// #109007# Default is to allow default connects
mbSuppressDefaultConnect(sal_False),
// #110649#
mbBoundRectCalculationRunning(sal_False),
mbSuppressed(false)
{
bClosedObj=sal_False;
bIsEdge=sal_True;
pEdgeTrack=new XPolygon;
}
SdrEdgeObj::~SdrEdgeObj()
{
DisconnectFromNode(sal_True);
DisconnectFromNode(sal_False);
delete pEdgeTrack;
}
void SdrEdgeObj::ImpSetAttrToEdgeInfo()
{
const SfxItemSet& rSet = GetObjectItemSet();
SdrEdgeKind eKind = ((SdrEdgeKindItem&)(rSet.Get(SDRATTR_EDGEKIND))).GetValue();
sal_Int32 nVal1 = ((SdrEdgeLine1DeltaItem&)rSet.Get(SDRATTR_EDGELINE1DELTA)).GetValue();
sal_Int32 nVal2 = ((SdrEdgeLine2DeltaItem&)rSet.Get(SDRATTR_EDGELINE2DELTA)).GetValue();
sal_Int32 nVal3 = ((SdrEdgeLine3DeltaItem&)rSet.Get(SDRATTR_EDGELINE3DELTA)).GetValue();
if(eKind == SDREDGE_ORTHOLINES || eKind == SDREDGE_BEZIER)
{
sal_Int32 nVals[3] = { nVal1, nVal2, nVal3 };
sal_uInt16 n = 0;
if(aEdgeInfo.nObj1Lines >= 2 && n < 3)
{
aEdgeInfo.ImpSetLineVersatz(OBJ1LINE2, *pEdgeTrack, nVals[n]);
n++;
}
if(aEdgeInfo.nObj1Lines >= 3 && n < 3)
{
aEdgeInfo.ImpSetLineVersatz(OBJ1LINE3, *pEdgeTrack, nVals[n]);
n++;
}
if(aEdgeInfo.nMiddleLine != 0xFFFF && n < 3)
{
aEdgeInfo.ImpSetLineVersatz(MIDDLELINE, *pEdgeTrack, nVals[n]);
n++;
}
if(aEdgeInfo.nObj2Lines >= 3 && n < 3)
{
aEdgeInfo.ImpSetLineVersatz(OBJ2LINE3, *pEdgeTrack, nVals[n]);
n++;
}
if(aEdgeInfo.nObj2Lines >= 2 && n < 3)
{
aEdgeInfo.ImpSetLineVersatz(OBJ2LINE2, *pEdgeTrack, nVals[n]);
n++;
}
}
else if(eKind == SDREDGE_THREELINES)
{
sal_Bool bHor1 = aEdgeInfo.nAngle1 == 0 || aEdgeInfo.nAngle1 == 18000;
sal_Bool bHor2 = aEdgeInfo.nAngle2 == 0 || aEdgeInfo.nAngle2 == 18000;
if(bHor1)
{
aEdgeInfo.aObj1Line2.X() = nVal1;
}
else
{
aEdgeInfo.aObj1Line2.Y() = nVal1;
}
if(bHor2)
{
aEdgeInfo.aObj2Line2.X() = nVal2;
}
else
{
aEdgeInfo.aObj2Line2.Y() = nVal2;
}
}
// #84649#
ImpDirtyEdgeTrack();
}
void SdrEdgeObj::ImpSetEdgeInfoToAttr()
{
const SfxItemSet& rSet = GetObjectItemSet();
SdrEdgeKind eKind = ((SdrEdgeKindItem&)(rSet.Get(SDRATTR_EDGEKIND))).GetValue();
sal_Int32 nValAnz = ((SdrEdgeLineDeltaAnzItem&)rSet.Get(SDRATTR_EDGELINEDELTAANZ)).GetValue();
sal_Int32 nVal1 = ((SdrEdgeLine1DeltaItem&)rSet.Get(SDRATTR_EDGELINE1DELTA)).GetValue();
sal_Int32 nVal2 = ((SdrEdgeLine2DeltaItem&)rSet.Get(SDRATTR_EDGELINE2DELTA)).GetValue();
sal_Int32 nVal3 = ((SdrEdgeLine3DeltaItem&)rSet.Get(SDRATTR_EDGELINE3DELTA)).GetValue();
sal_Int32 nVals[3] = { nVal1, nVal2, nVal3 };
sal_uInt16 n = 0;
if(eKind == SDREDGE_ORTHOLINES || eKind == SDREDGE_BEZIER)
{
if(aEdgeInfo.nObj1Lines >= 2 && n < 3)
{
nVals[n] = aEdgeInfo.ImpGetLineVersatz(OBJ1LINE2, *pEdgeTrack);
n++;
}
if(aEdgeInfo.nObj1Lines >= 3 && n < 3)
{
nVals[n] = aEdgeInfo.ImpGetLineVersatz(OBJ1LINE3, *pEdgeTrack);
n++;
}
if(aEdgeInfo.nMiddleLine != 0xFFFF && n < 3)
{
nVals[n] = aEdgeInfo.ImpGetLineVersatz(MIDDLELINE, *pEdgeTrack);
n++;
}
if(aEdgeInfo.nObj2Lines >= 3 && n < 3)
{
nVals[n] = aEdgeInfo.ImpGetLineVersatz(OBJ2LINE3, *pEdgeTrack);
n++;
}
if(aEdgeInfo.nObj2Lines >= 2 && n < 3)
{
nVals[n] = aEdgeInfo.ImpGetLineVersatz(OBJ2LINE2, *pEdgeTrack);
n++;
}
}
else if(eKind == SDREDGE_THREELINES)
{
sal_Bool bHor1 = aEdgeInfo.nAngle1 == 0 || aEdgeInfo.nAngle1 == 18000;
sal_Bool bHor2 = aEdgeInfo.nAngle2 == 0 || aEdgeInfo.nAngle2 == 18000;
n = 2;
nVals[0] = bHor1 ? aEdgeInfo.aObj1Line2.X() : aEdgeInfo.aObj1Line2.Y();
nVals[1] = bHor2 ? aEdgeInfo.aObj2Line2.X() : aEdgeInfo.aObj2Line2.Y();
}
if(n != nValAnz || nVals[0] != nVal1 || nVals[1] != nVal2 || nVals[2] != nVal3)
{
// #75371# Here no more notifying is necessary, just local changes are OK.
if(n != nValAnz)
{
GetProperties().SetObjectItemDirect(SdrEdgeLineDeltaAnzItem(n));
}
if(nVals[0] != nVal1)
{
GetProperties().SetObjectItemDirect(SdrEdgeLine1DeltaItem(nVals[0]));
}
if(nVals[1] != nVal2)
{
GetProperties().SetObjectItemDirect(SdrEdgeLine2DeltaItem(nVals[1]));
}
if(nVals[2] != nVal3)
{
GetProperties().SetObjectItemDirect(SdrEdgeLine3DeltaItem(nVals[2]));
}
if(n < 3)
{
GetProperties().ClearObjectItemDirect(SDRATTR_EDGELINE3DELTA);
}
if(n < 2)
{
GetProperties().ClearObjectItemDirect(SDRATTR_EDGELINE2DELTA);
}
if(n < 1)
{
GetProperties().ClearObjectItemDirect(SDRATTR_EDGELINE1DELTA);
}
}
}
void SdrEdgeObj::TakeObjInfo(SdrObjTransformInfoRec& rInfo) const
{
// #54102# allow rotation, mirror and shear
rInfo.bRotateFreeAllowed = true;
rInfo.bRotate90Allowed = true;
rInfo.bMirrorFreeAllowed = true;
rInfo.bMirror45Allowed = true;
rInfo.bMirror90Allowed = true;
rInfo.bTransparenceAllowed = sal_False;
rInfo.bGradientAllowed = sal_False;
rInfo.bShearAllowed = true;
rInfo.bEdgeRadiusAllowed = sal_False;
FASTBOOL bCanConv=!HasText() || ImpCanConvTextToCurve();
rInfo.bCanConvToPath=bCanConv;
rInfo.bCanConvToPoly=bCanConv;
rInfo.bCanConvToContour = (rInfo.bCanConvToPoly || LineGeometryUsageIsNecessary());
}
sal_uInt16 SdrEdgeObj::GetObjIdentifier() const
{
return sal_uInt16(OBJ_EDGE);
}
const Rectangle& SdrEdgeObj::GetCurrentBoundRect() const
{
if(bEdgeTrackDirty)
{
((SdrEdgeObj*)this)->ImpRecalcEdgeTrack();
}
return SdrTextObj::GetCurrentBoundRect();
}
const Rectangle& SdrEdgeObj::GetSnapRect() const
{
if(bEdgeTrackDirty)
{
((SdrEdgeObj*)this)->ImpRecalcEdgeTrack();
}
return SdrTextObj::GetSnapRect();
}
void SdrEdgeObj::RecalcSnapRect()
{
maSnapRect=pEdgeTrack->GetBoundRect();
}
void SdrEdgeObj::TakeUnrotatedSnapRect(Rectangle& rRect) const
{
rRect=GetSnapRect();
}
FASTBOOL SdrEdgeObj::IsNode() const
{
return sal_True;
}
SdrGluePoint SdrEdgeObj::GetVertexGluePoint(sal_uInt16 nNum) const
{
Point aPt;
sal_uInt16 nPntAnz=pEdgeTrack->GetPointCount();
if (nPntAnz>0)
{
Point aOfs = GetSnapRect().Center();
if (nNum==2 && GetConnectedNode(sal_True)==NULL) aPt=(*pEdgeTrack)[0];
else if (nNum==3 && GetConnectedNode(sal_False)==NULL) aPt=(*pEdgeTrack)[nPntAnz-1];
else {
if ((nPntAnz & 1) ==1) {
aPt=(*pEdgeTrack)[nPntAnz/2];
} else {
Point aPt1((*pEdgeTrack)[nPntAnz/2-1]);
Point aPt2((*pEdgeTrack)[nPntAnz/2]);
aPt1+=aPt2;
aPt1.X()/=2;
aPt1.Y()/=2;
aPt=aPt1;
}
}
aPt-=aOfs;
}
SdrGluePoint aGP(aPt);
aGP.SetPercent(sal_False);
return aGP;
}
SdrGluePoint SdrEdgeObj::GetCornerGluePoint(sal_uInt16 nNum) const
{
return GetVertexGluePoint(nNum);
}
const SdrGluePointList* SdrEdgeObj::GetGluePointList() const
{
return NULL; // Keine benutzerdefinierten Klebepunkte fuer Verbinder #31671#
}
SdrGluePointList* SdrEdgeObj::ForceGluePointList()
{
return NULL; // Keine benutzerdefinierten Klebepunkte fuer Verbinder #31671#
}
FASTBOOL SdrEdgeObj::IsEdge() const
{
return sal_True;
}
void SdrEdgeObj::ConnectToNode(FASTBOOL bTail1, SdrObject* pObj)
{
SdrObjConnection& rCon=GetConnection(bTail1);
DisconnectFromNode(bTail1);
if (pObj!=NULL) {
pObj->AddListener(*this);
rCon.pObj=pObj;
// #120437# If connection is set, reset bEdgeTrackUserDefined
bEdgeTrackUserDefined = false;
ImpDirtyEdgeTrack();
}
}
void SdrEdgeObj::DisconnectFromNode(FASTBOOL bTail1)
{
SdrObjConnection& rCon=GetConnection(bTail1);
if (rCon.pObj!=NULL) {
rCon.pObj->RemoveListener(*this);
rCon.pObj=NULL;
}
}
SdrObject* SdrEdgeObj::GetConnectedNode(FASTBOOL bTail1) const
{
SdrObject* pObj=GetConnection(bTail1).pObj;
if (pObj!=NULL && (pObj->GetPage()!=pPage || !pObj->IsInserted())) pObj=NULL;
return pObj;
}
FASTBOOL SdrEdgeObj::CheckNodeConnection(FASTBOOL bTail1) const
{
FASTBOOL bRet=sal_False;
const SdrObjConnection& rCon=GetConnection(bTail1);
sal_uInt16 nPtAnz=pEdgeTrack->GetPointCount();
if (rCon.pObj!=NULL && rCon.pObj->GetPage()==pPage && nPtAnz!=0) {
const SdrGluePointList* pGPL=rCon.pObj->GetGluePointList();
sal_uInt16 nConAnz=pGPL==NULL ? 0 : pGPL->GetCount();
sal_uInt16 nGesAnz=nConAnz+8;
Point aTail(bTail1 ? (*pEdgeTrack)[0] : (*pEdgeTrack)[sal_uInt16(nPtAnz-1)]);
for (sal_uInt16 i=0; i<nGesAnz && !bRet; i++) {
if (i<nConAnz) { // UserDefined
bRet=aTail==(*pGPL)[i].GetAbsolutePos(*rCon.pObj);
} else if (i<nConAnz+4) { // Vertex
SdrGluePoint aPt(rCon.pObj->GetVertexGluePoint(i-nConAnz));
bRet=aTail==aPt.GetAbsolutePos(*rCon.pObj);
} else { // Corner
SdrGluePoint aPt(rCon.pObj->GetCornerGluePoint(i-nConAnz-4));
bRet=aTail==aPt.GetAbsolutePos(*rCon.pObj);
}
}
}
return bRet;
}
void SdrEdgeObj::ImpSetTailPoint(FASTBOOL bTail1, const Point& rPt)
{
sal_uInt16 nPtAnz=pEdgeTrack->GetPointCount();
if (nPtAnz==0) {
(*pEdgeTrack)[0]=rPt;
(*pEdgeTrack)[1]=rPt;
} else if (nPtAnz==1) {
if (!bTail1) (*pEdgeTrack)[1]=rPt;
else { (*pEdgeTrack)[1]=(*pEdgeTrack)[0]; (*pEdgeTrack)[0]=rPt; }
} else {
if (!bTail1) (*pEdgeTrack)[sal_uInt16(nPtAnz-1)]=rPt;
else (*pEdgeTrack)[0]=rPt;
}
ImpRecalcEdgeTrack();
SetRectsDirty();
}
void SdrEdgeObj::ImpDirtyEdgeTrack()
{
if ( !bEdgeTrackUserDefined || !(GetModel() && GetModel()->isLocked()) )
bEdgeTrackDirty = sal_True;
}
void SdrEdgeObj::ImpUndirtyEdgeTrack()
{
if (bEdgeTrackDirty && (GetModel() && GetModel()->isLocked()) ) {
ImpRecalcEdgeTrack();
}
}
void SdrEdgeObj::ImpRecalcEdgeTrack()
{
// #120437# if bEdgeTrackUserDefined, do not recalculate
if(bEdgeTrackUserDefined)
{
return;
}
// #120437# also not when model locked during import, but remember
if(!GetModel() || GetModel()->isLocked())
{
mbSuppressed = true;
return;
}
// #110649#
if(IsBoundRectCalculationRunning())
{
// this object is involved into another ImpRecalcEdgeTrack() call
// from another SdrEdgeObj. Do not calculate again to avoid loop.
// Also, do not change bEdgeTrackDirty so that it gets recalculated
// later at the first non-looping call.
}
else
{
if(mbSuppressed)
{
// #123048# If layouting was ever suppressed, it needs to be done once
// and the attr need to be set at EdgeInfo, else these attr *will be lost*
// in the following call to ImpSetEdgeInfoToAttr() sice they were never
// set before (!)
*pEdgeTrack=ImpCalcEdgeTrack(*pEdgeTrack,aCon1,aCon2,&aEdgeInfo);
ImpSetAttrToEdgeInfo();
mbSuppressed = false;
}
// To not run in a depth loop, use a coloring algorythm on
// SdrEdgeObj BoundRect calculations
mbBoundRectCalculationRunning = sal_True;
Rectangle aBoundRect0; if (pUserCall!=NULL) aBoundRect0=GetCurrentBoundRect();
SetRectsDirty();
// #110094#-14 if (!bEdgeTrackDirty) SendRepaintBroadcast();
*pEdgeTrack=ImpCalcEdgeTrack(*pEdgeTrack,aCon1,aCon2,&aEdgeInfo);
ImpSetEdgeInfoToAttr(); // Die Werte aus aEdgeInfo in den Pool kopieren
bEdgeTrackDirty=sal_False;
// Only redraw here, no object change
ActionChanged();
// BroadcastObjectChange();
SendUserCall(SDRUSERCALL_RESIZE,aBoundRect0);
// #110649#
mbBoundRectCalculationRunning = sal_False;
}
}
sal_uInt16 SdrEdgeObj::ImpCalcEscAngle(SdrObject* pObj, const Point& rPt) const
{
if (pObj==NULL) return SDRESC_ALL;
Rectangle aR(pObj->GetSnapRect());
long dxl=rPt.X()-aR.Left();
long dyo=rPt.Y()-aR.Top();
long dxr=aR.Right()-rPt.X();
long dyu=aR.Bottom()-rPt.Y();
FASTBOOL bxMitt=Abs(dxl-dxr)<2;
FASTBOOL byMitt=Abs(dyo-dyu)<2;
long dx=Min(dxl,dxr);
long dy=Min(dyo,dyu);
FASTBOOL bDiag=Abs(dx-dy)<2;
if (bxMitt && byMitt) return SDRESC_ALL; // In der Mitte
if (bDiag) { // diagonal
sal_uInt16 nRet=0;
if (byMitt) nRet|=SDRESC_VERT;
if (bxMitt) nRet|=SDRESC_HORZ;
if (dxl<dxr) { // Links
if (dyo<dyu) nRet|=SDRESC_LEFT | SDRESC_TOP;
else nRet|=SDRESC_LEFT | SDRESC_BOTTOM;
} else { // Rechts
if (dyo<dyu) nRet|=SDRESC_RIGHT | SDRESC_TOP;
else nRet|=SDRESC_RIGHT | SDRESC_BOTTOM;
}
return nRet;
}
if (dx<dy) { // waagerecht
if (bxMitt) return SDRESC_HORZ;
if (dxl<dxr) return SDRESC_LEFT;
else return SDRESC_RIGHT;
} else { // senkrecht
if (byMitt) return SDRESC_VERT;
if (dyo<dyu) return SDRESC_TOP;
else return SDRESC_BOTTOM;
}
}
FASTBOOL SdrEdgeObj::ImpStripPolyPoints(XPolygon& /*rXP*/) const
{
// fehlende Implementation !!!
return sal_False;
}
XPolygon SdrEdgeObj::ImpCalcObjToCenter(const Point& rStPt, long nEscAngle, const Rectangle& rRect, const Point& rMeeting) const
{
XPolygon aXP;
aXP.Insert(XPOLY_APPEND,rStPt,XPOLY_NORMAL);
FASTBOOL bRts=nEscAngle==0;
FASTBOOL bObn=nEscAngle==9000;
FASTBOOL bLks=nEscAngle==18000;
FASTBOOL bUnt=nEscAngle==27000;
Point aP1(rStPt); // erstmal den Pflichtabstand
if (bLks) aP1.X()=rRect.Left();
if (bRts) aP1.X()=rRect.Right();
if (bObn) aP1.Y()=rRect.Top();
if (bUnt) aP1.Y()=rRect.Bottom();
FASTBOOL bFinish=sal_False;
if (!bFinish) {
Point aP2(aP1); // Und nun den Pflichtabstand ggf. bis auf Meetinghoehe erweitern
if (bLks && rMeeting.X()<=aP2.X()) aP2.X()=rMeeting.X();
if (bRts && rMeeting.X()>=aP2.X()) aP2.X()=rMeeting.X();
if (bObn && rMeeting.Y()<=aP2.Y()) aP2.Y()=rMeeting.Y();
if (bUnt && rMeeting.Y()>=aP2.Y()) aP2.Y()=rMeeting.Y();
aXP.Insert(XPOLY_APPEND,aP2,XPOLY_NORMAL);
Point aP3(aP2);
if ((bLks && rMeeting.X()>aP2.X()) || (bRts && rMeeting.X()<aP2.X())) { // Aussenrum
if (rMeeting.Y()<aP2.Y()) {
aP3.Y()=rRect.Top();
if (rMeeting.Y()<aP3.Y()) aP3.Y()=rMeeting.Y();
} else {
aP3.Y()=rRect.Bottom();
if (rMeeting.Y()>aP3.Y()) aP3.Y()=rMeeting.Y();
}
aXP.Insert(XPOLY_APPEND,aP3,XPOLY_NORMAL);
if (aP3.Y()!=rMeeting.Y()) {
aP3.X()=rMeeting.X();
aXP.Insert(XPOLY_APPEND,aP3,XPOLY_NORMAL);
}
}
if ((bObn && rMeeting.Y()>aP2.Y()) || (bUnt && rMeeting.Y()<aP2.Y())) { // Aussenrum
if (rMeeting.X()<aP2.X()) {
aP3.X()=rRect.Left();
if (rMeeting.X()<aP3.X()) aP3.X()=rMeeting.X();
} else {
aP3.X()=rRect.Right();
if (rMeeting.X()>aP3.X()) aP3.X()=rMeeting.X();
}
aXP.Insert(XPOLY_APPEND,aP3,XPOLY_NORMAL);
if (aP3.X()!=rMeeting.X()) {
aP3.Y()=rMeeting.Y();
aXP.Insert(XPOLY_APPEND,aP3,XPOLY_NORMAL);
}
}
}
#ifdef DBG_UTIL
if (aXP.GetPointCount()>4) {
DBG_ERROR("SdrEdgeObj::ImpCalcObjToCenter(): Polygon hat mehr als 4 Punkte!");
}
#endif
return aXP;
}
XPolygon SdrEdgeObj::ImpCalcEdgeTrack(const XPolygon& rTrack0, SdrObjConnection& rCon1, SdrObjConnection& rCon2, SdrEdgeInfoRec* pInfo) const
{
Point aPt1,aPt2;
SdrGluePoint aGP1,aGP2;
sal_uInt16 nEsc1=SDRESC_ALL,nEsc2=SDRESC_ALL;
Rectangle aBoundRect1;
Rectangle aBoundRect2;
Rectangle aBewareRect1;
Rectangle aBewareRect2;
// Erstmal die alten Endpunkte wiederholen
if (rTrack0.GetPointCount()!=0) {
aPt1=rTrack0[0];
sal_uInt16 nSiz=rTrack0.GetPointCount();
nSiz--;
aPt2=rTrack0[nSiz];
} else {
if (!aOutRect.IsEmpty()) {
aPt1=aOutRect.TopLeft();
aPt2=aOutRect.BottomRight();
}
}
// #54102# To allow interactive preview, do also if not inserted
FASTBOOL bCon1=rCon1.pObj!=NULL && rCon1.pObj->GetPage()==pPage; // && rCon1.pObj->IsInserted();
FASTBOOL bCon2=rCon2.pObj!=NULL && rCon2.pObj->GetPage()==pPage; // && rCon2.pObj->IsInserted();
const SfxItemSet& rSet = GetObjectItemSet();
if (bCon1) {
if (rCon1.pObj==(SdrObject*)this)
{
// sicherheitshalber Abfragen #44515#
aBoundRect1=aOutRect;
}
else
{
aBoundRect1 = rCon1.pObj->GetCurrentBoundRect();
}
aBoundRect1.Move(rCon1.aObjOfs.X(),rCon1.aObjOfs.Y());
aBewareRect1=aBoundRect1;
sal_Int32 nH = ((SdrEdgeNode1HorzDistItem&)rSet.Get(SDRATTR_EDGENODE1HORZDIST)).GetValue();
sal_Int32 nV = ((SdrEdgeNode1VertDistItem&)rSet.Get(SDRATTR_EDGENODE1VERTDIST)).GetValue();
aBewareRect1.Left()-=nH;
aBewareRect1.Right()+=nH;
aBewareRect1.Top()-=nV;
aBewareRect1.Bottom()+=nV;
} else {
aBoundRect1=Rectangle(aPt1,aPt1);
aBoundRect1.Move(rCon1.aObjOfs.X(),rCon1.aObjOfs.Y());
aBewareRect1=aBoundRect1;
}
if (bCon2) {
if (rCon2.pObj==(SdrObject*)this) { // sicherheitshalber Abfragen #44515#
aBoundRect2=aOutRect;
}
else
{
aBoundRect2 = rCon2.pObj->GetCurrentBoundRect();
}
aBoundRect2.Move(rCon2.aObjOfs.X(),rCon2.aObjOfs.Y());
aBewareRect2=aBoundRect2;
sal_Int32 nH = ((SdrEdgeNode2HorzDistItem&)rSet.Get(SDRATTR_EDGENODE2HORZDIST)).GetValue();
sal_Int32 nV = ((SdrEdgeNode2VertDistItem&)rSet.Get(SDRATTR_EDGENODE2VERTDIST)).GetValue();
aBewareRect2.Left()-=nH;
aBewareRect2.Right()+=nH;
aBewareRect2.Top()-=nV;
aBewareRect2.Bottom()+=nV;
} else {
aBoundRect2=Rectangle(aPt2,aPt2);
aBoundRect2.Move(rCon2.aObjOfs.X(),rCon2.aObjOfs.Y());
aBewareRect2=aBoundRect2;
}
XPolygon aBestXP;
sal_uIntPtr nBestQual=0xFFFFFFFF;
SdrEdgeInfoRec aBestInfo;
FASTBOOL bAuto1=bCon1 && rCon1.bBestVertex;
FASTBOOL bAuto2=bCon2 && rCon2.bBestVertex;
if (bAuto1) rCon1.bAutoVertex=sal_True;
if (bAuto2) rCon2.bAutoVertex=sal_True;
sal_uInt16 nBestAuto1=0;
sal_uInt16 nBestAuto2=0;
sal_uInt16 nAnz1=bAuto1 ? 4 : 1;
sal_uInt16 nAnz2=bAuto2 ? 4 : 1;
for (sal_uInt16 nNum1=0; nNum1<nAnz1; nNum1++) {
if (bAuto1) rCon1.nConId=nNum1;
if (bCon1 && rCon1.TakeGluePoint(aGP1,sal_True)) {
aPt1=aGP1.GetPos();
nEsc1=aGP1.GetEscDir();
if (nEsc1==SDRESC_SMART) nEsc1=ImpCalcEscAngle(rCon1.pObj,aPt1-rCon1.aObjOfs);
}
for (sal_uInt16 nNum2=0; nNum2<nAnz2; nNum2++) {
if (bAuto2) rCon2.nConId=nNum2;
if (bCon2 && rCon2.TakeGluePoint(aGP2,sal_True)) {
aPt2=aGP2.GetPos();
nEsc2=aGP2.GetEscDir();
if (nEsc2==SDRESC_SMART) nEsc2=ImpCalcEscAngle(rCon2.pObj,aPt2-rCon2.aObjOfs);
}
for (long nA1=0; nA1<36000; nA1+=9000) {
sal_uInt16 nE1=nA1==0 ? SDRESC_RIGHT : nA1==9000 ? SDRESC_TOP : nA1==18000 ? SDRESC_LEFT : nA1==27000 ? SDRESC_BOTTOM : 0;
for (long nA2=0; nA2<36000; nA2+=9000) {
sal_uInt16 nE2=nA2==0 ? SDRESC_RIGHT : nA2==9000 ? SDRESC_TOP : nA2==18000 ? SDRESC_LEFT : nA2==27000 ? SDRESC_BOTTOM : 0;
if ((nEsc1&nE1)!=0 && (nEsc2&nE2)!=0) {
sal_uIntPtr nQual=0;
SdrEdgeInfoRec aInfo;
if (pInfo!=NULL) aInfo=*pInfo;
XPolygon aXP(ImpCalcEdgeTrack(aPt1,nA1,aBoundRect1,aBewareRect1,aPt2,nA2,aBoundRect2,aBewareRect2,&nQual,&aInfo));
if (nQual<nBestQual) {
aBestXP=aXP;
nBestQual=nQual;
aBestInfo=aInfo;
nBestAuto1=nNum1;
nBestAuto2=nNum2;
}
}
}
}
}
}
if (bAuto1) rCon1.nConId=nBestAuto1;
if (bAuto2) rCon2.nConId=nBestAuto2;
if (pInfo!=NULL) *pInfo=aBestInfo;
return aBestXP;
}
XPolygon SdrEdgeObj::ImpCalcEdgeTrack(const Point& rPt1, long nAngle1, const Rectangle& rBoundRect1, const Rectangle& rBewareRect1,
const Point& rPt2, long nAngle2, const Rectangle& rBoundRect2, const Rectangle& rBewareRect2,
sal_uIntPtr* pnQuality, SdrEdgeInfoRec* pInfo) const
{
SdrEdgeKind eKind=((SdrEdgeKindItem&)(GetObjectItem(SDRATTR_EDGEKIND))).GetValue();
FASTBOOL bRts1=nAngle1==0;
FASTBOOL bObn1=nAngle1==9000;
FASTBOOL bLks1=nAngle1==18000;
FASTBOOL bUnt1=nAngle1==27000;
FASTBOOL bHor1=bLks1 || bRts1;
FASTBOOL bVer1=bObn1 || bUnt1;
FASTBOOL bRts2=nAngle2==0;
FASTBOOL bObn2=nAngle2==9000;
FASTBOOL bLks2=nAngle2==18000;
FASTBOOL bUnt2=nAngle2==27000;
FASTBOOL bHor2=bLks2 || bRts2;
FASTBOOL bVer2=bObn2 || bUnt2;
FASTBOOL bInfo=pInfo!=NULL;
if (bInfo) {
pInfo->cOrthoForm=0;
pInfo->nAngle1=nAngle1;
pInfo->nAngle2=nAngle2;
pInfo->nObj1Lines=1;
pInfo->nObj2Lines=1;
pInfo->nMiddleLine=0xFFFF;
}
Point aPt1(rPt1);
Point aPt2(rPt2);
Rectangle aBoundRect1 (rBoundRect1 );
Rectangle aBoundRect2 (rBoundRect2 );
Rectangle aBewareRect1(rBewareRect1);
Rectangle aBewareRect2(rBewareRect2);
Point aMeeting((aPt1.X()+aPt2.X()+1)/2,(aPt1.Y()+aPt2.Y()+1)/2);
FASTBOOL bMeetingXMid=sal_True;
FASTBOOL bMeetingYMid=sal_True;
if (eKind==SDREDGE_ONELINE) {
XPolygon aXP(2);
aXP[0]=rPt1;
aXP[1]=rPt2;
if (pnQuality!=NULL) {
*pnQuality=Abs(rPt1.X()-rPt2.X())+Abs(rPt1.Y()-rPt2.Y());
}
return aXP;
} else if (eKind==SDREDGE_THREELINES) {
XPolygon aXP(4);
aXP[0]=rPt1;
aXP[1]=rPt1;
aXP[2]=rPt2;
aXP[3]=rPt2;
if (bRts1) aXP[1].X()=aBewareRect1.Right(); //+=500;
if (bObn1) aXP[1].Y()=aBewareRect1.Top(); //-=500;
if (bLks1) aXP[1].X()=aBewareRect1.Left(); //-=500;
if (bUnt1) aXP[1].Y()=aBewareRect1.Bottom(); //+=500;
if (bRts2) aXP[2].X()=aBewareRect2.Right(); //+=500;
if (bObn2) aXP[2].Y()=aBewareRect2.Top(); //-=500;
if (bLks2) aXP[2].X()=aBewareRect2.Left(); //-=500;
if (bUnt2) aXP[2].Y()=aBewareRect2.Bottom(); //+=500;
if (pnQuality!=NULL) {
long nQ=Abs(aXP[1].X()-aXP[0].X())+Abs(aXP[1].Y()-aXP[0].Y());
nQ+=Abs(aXP[2].X()-aXP[1].X())+Abs(aXP[2].Y()-aXP[1].Y());
nQ+=Abs(aXP[3].X()-aXP[2].X())+Abs(aXP[3].Y()-aXP[2].Y());
*pnQuality=nQ;
}
if (bInfo) {
pInfo->nObj1Lines=2;
pInfo->nObj2Lines=2;
if (bHor1) {
aXP[1].X()+=pInfo->aObj1Line2.X();
} else {
aXP[1].Y()+=pInfo->aObj1Line2.Y();
}
if (bHor2) {
aXP[2].X()+=pInfo->aObj2Line2.X();
} else {
aXP[2].Y()+=pInfo->aObj2Line2.Y();
}
}
return aXP;
}
sal_uInt16 nIntersections=0;
FASTBOOL bForceMeeting=sal_False; // Muss die Linie durch den MeetingPoint laufen?
{
Point aC1(aBewareRect1.Center());
Point aC2(aBewareRect2.Center());
if (aBewareRect1.Left()<=aBewareRect2.Right() && aBewareRect1.Right()>=aBewareRect2.Left()) {
// Ueberschneidung auf der X-Achse
long n1=Max(aBewareRect1.Left(),aBewareRect2.Left());
long n2=Min(aBewareRect1.Right(),aBewareRect2.Right());
aMeeting.X()=(n1+n2+1)/2;
} else {
// Ansonsten den Mittelpunkt des Freiraums
if (aC1.X()<aC2.X()) {
aMeeting.X()=(aBewareRect1.Right()+aBewareRect2.Left()+1)/2;
} else {
aMeeting.X()=(aBewareRect1.Left()+aBewareRect2.Right()+1)/2;
}
}
if (aBewareRect1.Top()<=aBewareRect2.Bottom() && aBewareRect1.Bottom()>=aBewareRect2.Top()) {
// Ueberschneidung auf der Y-Achse
long n1=Max(aBewareRect1.Top(),aBewareRect2.Top());
long n2=Min(aBewareRect1.Bottom(),aBewareRect2.Bottom());
aMeeting.Y()=(n1+n2+1)/2;
} else {
// Ansonsten den Mittelpunkt des Freiraums
if (aC1.Y()<aC2.Y()) {
aMeeting.Y()=(aBewareRect1.Bottom()+aBewareRect2.Top()+1)/2;
} else {
aMeeting.Y()=(aBewareRect1.Top()+aBewareRect2.Bottom()+1)/2;
}
}
// Im Prinzip gibt es 3 zu unterscheidene Faelle:
// 1. Beide in die selbe Richtung
// 2. Beide in genau entgegengesetzte Richtungen
// 3. Einer waagerecht und der andere senkrecht
long nXMin=Min(aBewareRect1.Left(),aBewareRect2.Left());
long nXMax=Max(aBewareRect1.Right(),aBewareRect2.Right());
long nYMin=Min(aBewareRect1.Top(),aBewareRect2.Top());
long nYMax=Max(aBewareRect1.Bottom(),aBewareRect2.Bottom());
FASTBOOL bBewareOverlap=aBewareRect1.Right()>aBewareRect2.Left() && aBewareRect1.Left()<aBewareRect2.Right() &&
aBewareRect1.Bottom()>aBewareRect2.Top() && aBewareRect1.Top()<aBewareRect2.Bottom();
unsigned nMainCase=3;
if (nAngle1==nAngle2) nMainCase=1;
else if ((bHor1 && bHor2) || (bVer1 && bVer2)) nMainCase=2;
if (nMainCase==1) { // Fall 1: Beide in eine Richtung moeglich.
if (bVer1) aMeeting.X()=(aPt1.X()+aPt2.X()+1)/2; // ist hier besser, als der
if (bHor1) aMeeting.Y()=(aPt1.Y()+aPt2.Y()+1)/2; // Mittelpunkt des Freiraums
// bX1Ok bedeutet, dass die Vertikale, die aus Obj1 austritt, keinen Konflikt mit Obj2 bildet, ...
FASTBOOL bX1Ok=aPt1.X()<=aBewareRect2.Left() || aPt1.X()>=aBewareRect2.Right();
FASTBOOL bX2Ok=aPt2.X()<=aBewareRect1.Left() || aPt2.X()>=aBewareRect1.Right();
FASTBOOL bY1Ok=aPt1.Y()<=aBewareRect2.Top() || aPt1.Y()>=aBewareRect2.Bottom();
FASTBOOL bY2Ok=aPt2.Y()<=aBewareRect1.Top() || aPt2.Y()>=aBewareRect1.Bottom();
if (bLks1 && (bY1Ok || aBewareRect1.Left()<aBewareRect2.Right()) && (bY2Ok || aBewareRect2.Left()<aBewareRect1.Right())) {
aMeeting.X()=nXMin;
bMeetingXMid=sal_False;
}
if (bRts1 && (bY1Ok || aBewareRect1.Right()>aBewareRect2.Left()) && (bY2Ok || aBewareRect2.Right()>aBewareRect1.Left())) {
aMeeting.X()=nXMax;
bMeetingXMid=sal_False;
}
if (bObn1 && (bX1Ok || aBewareRect1.Top()<aBewareRect2.Bottom()) && (bX2Ok || aBewareRect2.Top()<aBewareRect1.Bottom())) {
aMeeting.Y()=nYMin;
bMeetingYMid=sal_False;
}
if (bUnt1 && (bX1Ok || aBewareRect1.Bottom()>aBewareRect2.Top()) && (bX2Ok || aBewareRect2.Bottom()>aBewareRect1.Top())) {
aMeeting.Y()=nYMax;
bMeetingYMid=sal_False;
}
} else if (nMainCase==2) {
// Fall 2:
bForceMeeting=sal_True;
if (bHor1) { // beide waagerecht
/* 9 Moeglichkeiten: ù ù ù */
/* 2.1 Gegenueber, Ueberschneidung à ´ ù */
/* nur auf der Y-Achse ù ù ù */
/* 2.2, 2.3 Gegenueber, vertikal versetzt. Ã ù ù ù ù ù */
/* Ueberschneidung weder auf der ù ´ ù ù ´ ù */
/* X- noch auf der Y-Achse ù ù ù Ã ù ù */
/* 2.4, 2.5 Untereinander, ù Ã ù ù ù ù */
/* Ueberschneidung ù ´ ù ù ´ ù */
/* nur auf X-Achse ù ù ù ù Ã ù */
/* 2.6, 2.7 Gegeneinander, vertikal versetzt. ù ù Ã ù ù ù */
/* Ueberschneidung weder auf der ù ´ ù ù ´ ù */
/* X- noch auf der Y-Achse. ù ù ù ù ù Ã */
/* 2.8 Gegeneinander. ù ù ù */
/* Ueberschneidung nur ù ´ Ã */
/* auf der Y-Achse. ù ù ù */
/* 2.9 Die BewareRects der Objekte ueberschneiden */
/* sich auf X- und Y-Achse. */
/* Die Faelle gelten entsprechend umgesetzt auch fuer */
/* senkrechte Linienaustritte. */
/* Die Faelle 2.1-2.7 werden mit dem Default-Meeting ausreichend*/
/* gut behandelt. Spezielle MeetingPoints werden hier also nur */
/* fuer 2.8 und 2.9 bestimmt. */
// Normalisierung. aR1 soll der nach rechts und
// aR2 der nach links austretende sein.
Rectangle aBewR1(bRts1 ? aBewareRect1 : aBewareRect2);
Rectangle aBewR2(bRts1 ? aBewareRect2 : aBewareRect1);
Rectangle aBndR1(bRts1 ? aBoundRect1 : aBoundRect2);
Rectangle aBndR2(bRts1 ? aBoundRect2 : aBoundRect1);
if (aBewR1.Bottom()>aBewR2.Top() && aBewR1.Top()<aBewR2.Bottom()) {
// Ueberschneidung auf der Y-Achse. Faelle 2.1, 2.8, 2.9
if (aBewR1.Right()>aBewR2.Left()) {
// Faelle 2.8, 2.9
// Fall 2.8 ist immer Aussenrumlauf (bDirect=sal_False).
// Fall 2.9 kann auch Direktverbindung sein (bei geringer
// Ueberschneidung der BewareRects ohne Ueberschneidung der
// Boundrects wenn die Linienaustritte sonst das BewareRect
// des jeweils anderen Objekts verletzen wuerden.
FASTBOOL bCase29Direct=sal_False;
FASTBOOL bCase29=aBewR1.Right()>aBewR2.Left();
if (aBndR1.Right()<=aBndR2.Left()) { // Fall 2.9 und keine Boundrectueberschneidung
if ((aPt1.Y()>aBewareRect2.Top() && aPt1.Y()<aBewareRect2.Bottom()) ||
(aPt2.Y()>aBewareRect1.Top() && aPt2.Y()<aBewareRect1.Bottom())) {
bCase29Direct=sal_True;
}
}
if (!bCase29Direct) {
FASTBOOL bObenLang=Abs(nYMin-aMeeting.Y())<=Abs(nYMax-aMeeting.Y());
if (bObenLang) {
aMeeting.Y()=nYMin;
} else {
aMeeting.Y()=nYMax;
}
bMeetingYMid=sal_False;
if (bCase29) {
// und nun noch dafuer sorgen, dass das
// umzingelte Obj nicht durchquert wird
if ((aBewR1.Center().Y()<aBewR2.Center().Y()) != bObenLang) {
aMeeting.X()=aBewR2.Right();
} else {
aMeeting.X()=aBewR1.Left();
}
bMeetingXMid=sal_False;
}
} else {
// Direkte Verbindung (3-Linien Z-Verbindung), da
// Verletzung der BewareRects unvermeidlich ist.
// Via Dreisatz werden die BewareRects nun verkleinert.
long nWant1=aBewR1.Right()-aBndR1.Right(); // Abstand bei Obj1
long nWant2=aBndR2.Left()-aBewR2.Left(); // Abstand bei Obj2
long nSpace=aBndR2.Left()-aBndR1.Right(); // verfuegbarer Platz
long nGet1=BigMulDiv(nWant1,nSpace,nWant1+nWant2);
long nGet2=nSpace-nGet1;
if (bRts1) { // Normalisierung zurueckwandeln
aBewareRect1.Right()+=nGet1-nWant1;
aBewareRect2.Left()-=nGet2-nWant2;
} else {
aBewareRect2.Right()+=nGet1-nWant1;
aBewareRect1.Left()-=nGet2-nWant2;
}
nIntersections++; // Qualitaet herabsetzen
}
}
}
} else if (bVer1) { // beide senkrecht
Rectangle aBewR1(bUnt1 ? aBewareRect1 : aBewareRect2);
Rectangle aBewR2(bUnt1 ? aBewareRect2 : aBewareRect1);
Rectangle aBndR1(bUnt1 ? aBoundRect1 : aBoundRect2);
Rectangle aBndR2(bUnt1 ? aBoundRect2 : aBoundRect1);
if (aBewR1.Right()>aBewR2.Left() && aBewR1.Left()<aBewR2.Right()) {
// Ueberschneidung auf der Y-Achse. Faelle 2.1, 2.8, 2.9
if (aBewR1.Bottom()>aBewR2.Top()) {
// Faelle 2.8, 2.9
// Fall 2.8 ist immer Aussenrumlauf (bDirect=sal_False).
// Fall 2.9 kann auch Direktverbindung sein (bei geringer
// Ueberschneidung der BewareRects ohne Ueberschneidung der
// Boundrects wenn die Linienaustritte sonst das BewareRect
// des jeweils anderen Objekts verletzen wuerden.
FASTBOOL bCase29Direct=sal_False;
FASTBOOL bCase29=aBewR1.Bottom()>aBewR2.Top();
if (aBndR1.Bottom()<=aBndR2.Top()) { // Fall 2.9 und keine Boundrectueberschneidung
if ((aPt1.X()>aBewareRect2.Left() && aPt1.X()<aBewareRect2.Right()) ||
(aPt2.X()>aBewareRect1.Left() && aPt2.X()<aBewareRect1.Right())) {
bCase29Direct=sal_True;
}
}
if (!bCase29Direct) {
FASTBOOL bLinksLang=Abs(nXMin-aMeeting.X())<=Abs(nXMax-aMeeting.X());
if (bLinksLang) {
aMeeting.X()=nXMin;
} else {
aMeeting.X()=nXMax;
}
bMeetingXMid=sal_False;
if (bCase29) {
// und nun noch dafuer sorgen, dass das
// umzingelte Obj nicht durchquert wird
if ((aBewR1.Center().X()<aBewR2.Center().X()) != bLinksLang) {
aMeeting.Y()=aBewR2.Bottom();
} else {
aMeeting.Y()=aBewR1.Top();
}
bMeetingYMid=sal_False;
}
} else {
// Direkte Verbindung (3-Linien Z-Verbindung), da
// Verletzung der BewareRects unvermeidlich ist.
// Via Dreisatz werden die BewareRects nun verkleinert.
long nWant1=aBewR1.Bottom()-aBndR1.Bottom(); // Abstand bei Obj1
long nWant2=aBndR2.Top()-aBewR2.Top(); // Abstand bei Obj2
long nSpace=aBndR2.Top()-aBndR1.Bottom(); // verfuegbarer Platz
long nGet1=BigMulDiv(nWant1,nSpace,nWant1+nWant2);
long nGet2=nSpace-nGet1;
if (bUnt1) { // Normalisierung zurueckwandeln
aBewareRect1.Bottom()+=nGet1-nWant1;
aBewareRect2.Top()-=nGet2-nWant2;
} else {
aBewareRect2.Bottom()+=nGet1-nWant1;
aBewareRect1.Top()-=nGet2-nWant2;
}
nIntersections++; // Qualitaet herabsetzen
}
}
}
}
} else if (nMainCase==3) { // Fall 3: Einer waagerecht und der andere senkrecht. Sehr viele Fallunterscheidungen
/* Kleine Legende: ù ú ù ú ù -> Ohne Ueberschneidung, maximal Beruehrung. */
/* ú ú ú ú ú -> Ueberschneidung */
/* ù ú Ã ú ù -> Selbe Hoehe */
/* ú ú ú ú ú -> Ueberschneidung */
/* ù ú ù ú ù -> Ohne Ueberschneidung, maximal Beruehrung. */
/* Linienaustritte links ´, rechts Ã, oben Á und unten Â. */
/* Insgesamt sind 96 Konstellationen moeglich, wobei einige nicht einmal */
/* eindeutig einem Fall und damit einer Behandlungsmethode zugeordnet werden */
/* koennen. */
/* 3.1: Hierzu moegen alle Konstellationen zaehlen, die durch den */
/* Default-MeetingPoint zufriedenstellend abgedeckt sind (20+12). */
/* Â Â Â ú Á Á ú Â Â Â Diese 12 ù ú ù Â ù ù ú ù ú ù ù Â ù ú ù ù ú ù ú ù */
/* ú ú ú ú Á Á ú ú ú ú Konstel. ú ú ú ú ú ú ú ú ú Â ú ú ú ú ú Â ú ú ú ú */
/* ù ú Ã ú ù ù ú ´ ú ù jedoch ù ú Ã ú Á ù ú Ã ú Â Á ú ´ ú ù Â ú ´ ú ù */
/* ú ú ú ú Â Â ú ú ú ú nur zum ú ú ú ú Á ú ú ú ú ú Á ú ú ú ú ú ú ú ú ú */
/* Á Á Á ú Â Â ú Á Á Á Teil: ù ú ù Á ù ù ú ù ú ù ù Á ù ú ù ù ú ù ú ù */
/* Letztere 16 Faelle scheiden aus, sobald sich die Objekte offen */
/* gegenueberstehen (siehe Fall 3.2). */
/* 3.2: Die Objekte stehen sich offen gegenueber und somit ist eine */
/* Verbindung mit lediglich 2 Linien moeglich (4+20). */
/* Dieser Fall hat 1. Prioritaet. */
/* ù ú ù ú Â Â ú ù ú ù Diese 20 ù ú ù Â ù ù Â ù ú ù ù ú ù ú ù ù ú ù ú ù */
/* ú ú ú ú ú ú ú ú ú ú Konstel. ú ú ú Â Â Â Â ú ú ú ú ú ú ú ú ú ú ú ú ú */
/* ù ú Ã ú ù ù ú ´ ú ù jedoch ù ú Ã Á Á Á Á ´ ú ù ù ú Ã Â Â Â Â ´ ú ù */
/* ú ú ú ú ú ú ú ú ú ú nur zum ú ú ú Á Á Á Á ú ú ú ú ú ú ú ú ú ú ú ú ú */
/* ù ú ù ú Á Á ú ù ú ù Teil: ù ú ù Á ù ù Á ù ú ù ù ú ù ú ù ù ú ù ú ù */
/* 3.3: Die Linienaustritte zeigen vom anderen Objekt weg bzw. hinter */
/* dessen Ruecken vorbei (52+4). */
/* Á Á Á Á ù ù Á Á Á Á ù ú ú ú ù ù ú ù ú ù Diese 4 ù ú ù ú ù ù ú ù ú ù */
/* Á Á Á Á ú ú Á Á Á Á Â Â Â ú ú ú ú Â Â Â Konstel. ú ú ú Â ú ú Â ú ú ú */
/* Á Á Ã ú ù ù ú ´ Á Á Â Â Ã ú ù ù ú ´ Â Â jedoch ù ú Ã ú ù ù ú ´ ú ù */
/* Á Á Á ú ú ú ú Á Á Á Â Â Â Â ú ú Â Â Â Â nur zum ú ú ú Á ú ú Á ú ú ú */
/* ù ú ù ú ù ù ú ù ú ù Â Â Â Â ù ù Â Â Â Â Teil: ù ú ù ú ù ù ú ù ú ù */
// Fall 3.2
Rectangle aTmpR1(aBewareRect1);
Rectangle aTmpR2(aBewareRect2);
if (bBewareOverlap) {
// Ueberschneidung der BewareRects: BoundRects fuer Check auf Fall 3.2 verwenden.
aTmpR1=aBoundRect1;
aTmpR2=aBoundRect2;
}
if ((((bRts1 && aTmpR1.Right ()<=aPt2.X()) || (bLks1 && aTmpR1.Left()>=aPt2.X())) &&
((bUnt2 && aTmpR2.Bottom()<=aPt1.Y()) || (bObn2 && aTmpR2.Top ()>=aPt1.Y()))) ||
(((bRts2 && aTmpR2.Right ()<=aPt1.X()) || (bLks2 && aTmpR2.Left()>=aPt1.X())) &&
((bUnt1 && aTmpR1.Bottom()<=aPt2.Y()) || (bObn1 && aTmpR1.Top ()>=aPt2.Y())))) {
// Fall 3.2 trifft zu: Verbindung mit lediglich 2 Linien
bForceMeeting=sal_True;
bMeetingXMid=sal_False;
bMeetingYMid=sal_False;
if (bHor1) {
aMeeting.X()=aPt2.X();
aMeeting.Y()=aPt1.Y();
} else {
aMeeting.X()=aPt1.X();
aMeeting.Y()=aPt2.Y();
}
// Falls Ueberschneidung der BewareRects:
aBewareRect1=aTmpR1;
aBewareRect2=aTmpR2;
} else if ((((bRts1 && aBewareRect1.Right ()>aBewareRect2.Left ()) ||
(bLks1 && aBewareRect1.Left ()<aBewareRect2.Right ())) &&
((bUnt2 && aBewareRect2.Bottom()>aBewareRect1.Top ()) ||
(bObn2 && aBewareRect2.Top ()<aBewareRect1.Bottom()))) ||
(((bRts2 && aBewareRect2.Right ()>aBewareRect1.Left ()) ||
(bLks2 && aBewareRect2.Left ()<aBewareRect1.Right ())) &&
((bUnt1 && aBewareRect1.Bottom()>aBewareRect2.Top ()) ||
(bObn1 && aBewareRect1.Top ()<aBewareRect2.Bottom())))) {
// Fall 3.3
bForceMeeting=sal_True;
if (bRts1 || bRts2) { aMeeting.X()=nXMax; bMeetingXMid=sal_False; }
if (bLks1 || bLks2) { aMeeting.X()=nXMin; bMeetingXMid=sal_False; }
if (bUnt1 || bUnt2) { aMeeting.Y()=nYMax; bMeetingYMid=sal_False; }
if (bObn1 || bObn2) { aMeeting.Y()=nYMin; bMeetingYMid=sal_False; }
}
}
}
XPolygon aXP1(ImpCalcObjToCenter(aPt1,nAngle1,aBewareRect1,aMeeting));
XPolygon aXP2(ImpCalcObjToCenter(aPt2,nAngle2,aBewareRect2,aMeeting));
sal_uInt16 nXP1Anz=aXP1.GetPointCount();
sal_uInt16 nXP2Anz=aXP2.GetPointCount();
if (bInfo) {
pInfo->nObj1Lines=nXP1Anz; if (nXP1Anz>1) pInfo->nObj1Lines--;
pInfo->nObj2Lines=nXP2Anz; if (nXP2Anz>1) pInfo->nObj2Lines--;
}
Point aEP1(aXP1[nXP1Anz-1]);
Point aEP2(aXP2[nXP2Anz-1]);
FASTBOOL bInsMeetingPoint=aEP1.X()!=aEP2.X() && aEP1.Y()!=aEP2.Y();
FASTBOOL bHorzE1=aEP1.Y()==aXP1[nXP1Anz-2].Y(); // letzte Linie von XP1 horizontal?
FASTBOOL bHorzE2=aEP2.Y()==aXP2[nXP2Anz-2].Y(); // letzte Linie von XP2 horizontal?
if (aEP1==aEP2 && (bHorzE1 && bHorzE2 && aEP1.Y()==aEP2.Y()) || (!bHorzE1 && !bHorzE2 && aEP1.X()==aEP2.X())) {
// Sonderbehandlung fuer 'I'-Verbinder
nXP1Anz--; aXP1.Remove(nXP1Anz,1);
nXP2Anz--; aXP2.Remove(nXP2Anz,1);
bMeetingXMid=sal_False;
bMeetingYMid=sal_False;
}
if (bInsMeetingPoint) {
aXP1.Insert(XPOLY_APPEND,aMeeting,XPOLY_NORMAL);
if (bInfo) {
// Durch einfuegen des MeetingPoints kommen 2 weitere Linie hinzu.
// Evtl. wird eine von diesen die Mittellinie.
if (pInfo->nObj1Lines==pInfo->nObj2Lines) {
pInfo->nObj1Lines++;
pInfo->nObj2Lines++;
} else {
if (pInfo->nObj1Lines>pInfo->nObj2Lines) {
pInfo->nObj2Lines++;
pInfo->nMiddleLine=nXP1Anz-1;
} else {
pInfo->nObj1Lines++;
pInfo->nMiddleLine=nXP1Anz;
}
}
}
} else if (bInfo && aEP1!=aEP2 && nXP1Anz+nXP2Anz>=4) {
// Durch Verbinden der beiden Enden kommt eine weitere Linie hinzu.
// Dies wird die Mittellinie.
pInfo->nMiddleLine=nXP1Anz-1;
}
sal_uInt16 nNum=aXP2.GetPointCount();
if (aXP1[nXP1Anz-1]==aXP2[nXP2Anz-1] && nXP1Anz>1 && nXP2Anz>1) nNum--;
while (nNum>0) {
nNum--;
aXP1.Insert(XPOLY_APPEND,aXP2[nNum],XPOLY_NORMAL);
}
sal_uInt16 nPntAnz=aXP1.GetPointCount();
char cForm=0;
if (bInfo || pnQuality!=NULL) {
cForm='?';
if (nPntAnz==2) cForm='I';
else if (nPntAnz==3) cForm='L';
else if (nPntAnz==4) { // Z oder U
if (nAngle1==nAngle2) cForm='U';
else cForm='Z';
} else if (nPntAnz==4) { /* Ú-¿ Ú-¿ */
/* ... -Ù -Ù */
} else if (nPntAnz==6) { // S oder C oder ...
if (nAngle1!=nAngle2) {
// Fuer Typ S hat Linie2 dieselbe Richtung wie Linie4.
// Bei Typ C sind die beiden genau entgegengesetzt.
Point aP1(aXP1[1]);
Point aP2(aXP1[2]);
Point aP3(aXP1[3]);
Point aP4(aXP1[4]);
if (aP1.Y()==aP2.Y()) { // beide Linien Horz
if ((aP1.X()<aP2.X())==(aP3.X()<aP4.X())) cForm='S';
else cForm='C';
} else { // sonst beide Linien Vert
if ((aP1.Y()<aP2.Y())==(aP3.Y()<aP4.Y())) cForm='S';
else cForm='C';
}
} else cForm='4'; // sonst der 3. Fall mit 5 Linien
} else cForm='?'; //
// Weitere Formen:
if (bInfo) {
pInfo->cOrthoForm=cForm;
if (cForm=='I' || cForm=='L' || cForm=='Z' || cForm=='U') {
pInfo->nObj1Lines=1;
pInfo->nObj2Lines=1;
if (cForm=='Z' || cForm=='U') {
pInfo->nMiddleLine=1;
} else {
pInfo->nMiddleLine=0xFFFF;
}
} else if (cForm=='S' || cForm=='C') {
pInfo->nObj1Lines=2;
pInfo->nObj2Lines=2;
pInfo->nMiddleLine=2;
}
}
}
if (pnQuality!=NULL) {
sal_uIntPtr nQual=0;
sal_uIntPtr nQual0=nQual; // Ueberlaeufe vorbeugen
FASTBOOL bOverflow=sal_False;
Point aPt0(aXP1[0]);
for (sal_uInt16 nPntNum=1; nPntNum<nPntAnz; nPntNum++) {
Point aPt1b(aXP1[nPntNum]);
nQual+=Abs(aPt1b.X()-aPt0.X())+Abs(aPt1b.Y()-aPt0.Y());
if (nQual<nQual0) bOverflow=sal_True;
nQual0=nQual;
aPt0=aPt1b;
}
sal_uInt16 nTmp=nPntAnz;
if (cForm=='Z') {
nTmp=2; // Z-Form hat gute Qualitaet (nTmp=2 statt 4)
sal_uIntPtr n1=Abs(aXP1[1].X()-aXP1[0].X())+Abs(aXP1[1].Y()-aXP1[0].Y());
sal_uIntPtr n2=Abs(aXP1[2].X()-aXP1[1].X())+Abs(aXP1[2].Y()-aXP1[1].Y());
sal_uIntPtr n3=Abs(aXP1[3].X()-aXP1[2].X())+Abs(aXP1[3].Y()-aXP1[2].Y());
// fuer moeglichst gleichlange Linien sorgen
sal_uIntPtr nBesser=0;
n1+=n3;
n3=n2/4;
if (n1>=n2) nBesser=6;
else if (n1>=3*n3) nBesser=4;
else if (n1>=2*n3) nBesser=2;
if (aXP1[0].Y()!=aXP1[1].Y()) nBesser++; // Senkrechte Startlinie kriegt auch noch einen Pluspunkt (fuer H/V-Prio)
if (nQual>nBesser) nQual-=nBesser; else nQual=0;
}
if (nTmp>=3) {
nQual0=nQual;
nQual+=(sal_uIntPtr)nTmp*0x01000000;
if (nQual<nQual0 || nTmp>15) bOverflow=sal_True;
}
if (nPntAnz>=2) { // Austrittswinkel nochmal pruefen
Point aP1(aXP1[1]); aP1-=aXP1[0];
Point aP2(aXP1[nPntAnz-2]); aP2-=aXP1[nPntAnz-1];
long nAng1=0; if (aP1.X()<0) nAng1=18000; if (aP1.Y()>0) nAng1=27000;
if (aP1.Y()<0) nAng1=9000; if (aP1.X()!=0 && aP1.Y()!=0) nAng1=1; // Schraeg!?!
long nAng2=0; if (aP2.X()<0) nAng2=18000; if (aP2.Y()>0) nAng2=27000;
if (aP2.Y()<0) nAng2=9000; if (aP2.X()!=0 && aP2.Y()!=0) nAng2=1; // Schraeg!?!
if (nAng1!=nAngle1) nIntersections++;
if (nAng2!=nAngle2) nIntersections++;
}
// Fuer den Qualitaetscheck wieder die Original-Rects verwenden und
// gleichzeitig checken, ob eins fuer die Edge-Berechnung verkleinert
// wurde (z.B. Fall 2.9)
aBewareRect1=rBewareRect1;
aBewareRect2=rBewareRect2;
for (sal_uInt16 i=0; i<nPntAnz; i++) {
Point aPt1b(aXP1[i]);
FASTBOOL b1=aPt1b.X()>aBewareRect1.Left() && aPt1b.X()<aBewareRect1.Right() &&
aPt1b.Y()>aBewareRect1.Top() && aPt1b.Y()<aBewareRect1.Bottom();
FASTBOOL b2=aPt1b.X()>aBewareRect2.Left() && aPt1b.X()<aBewareRect2.Right() &&
aPt1b.Y()>aBewareRect2.Top() && aPt1b.Y()<aBewareRect2.Bottom();
sal_uInt16 nInt0=nIntersections;
if (i==0 || i==nPntAnz-1) {
if (b1 && b2) nIntersections++;
} else {
if (b1) nIntersections++;
if (b2) nIntersections++;
}
// und nun noch auf Ueberschneidungen checken
if (i>0 && nInt0==nIntersections) {
if (aPt0.Y()==aPt1b.Y()) { // Horizontale Linie
if (aPt0.Y()>aBewareRect1.Top() && aPt0.Y()<aBewareRect1.Bottom() &&
((aPt0.X()<=aBewareRect1.Left() && aPt1b.X()>=aBewareRect1.Right()) ||
(aPt1b.X()<=aBewareRect1.Left() && aPt0.X()>=aBewareRect1.Right()))) nIntersections++;
if (aPt0.Y()>aBewareRect2.Top() && aPt0.Y()<aBewareRect2.Bottom() &&
((aPt0.X()<=aBewareRect2.Left() && aPt1b.X()>=aBewareRect2.Right()) ||
(aPt1b.X()<=aBewareRect2.Left() && aPt0.X()>=aBewareRect2.Right()))) nIntersections++;
} else { // Vertikale Linie
if (aPt0.X()>aBewareRect1.Left() && aPt0.X()<aBewareRect1.Right() &&
((aPt0.Y()<=aBewareRect1.Top() && aPt1b.Y()>=aBewareRect1.Bottom()) ||
(aPt1b.Y()<=aBewareRect1.Top() && aPt0.Y()>=aBewareRect1.Bottom()))) nIntersections++;
if (aPt0.X()>aBewareRect2.Left() && aPt0.X()<aBewareRect2.Right() &&
((aPt0.Y()<=aBewareRect2.Top() && aPt1b.Y()>=aBewareRect2.Bottom()) ||
(aPt1b.Y()<=aBewareRect2.Top() && aPt0.Y()>=aBewareRect2.Bottom()))) nIntersections++;
}
}
aPt0=aPt1b;
}
if (nPntAnz<=1) nIntersections++;
nQual0=nQual;
nQual+=(sal_uIntPtr)nIntersections*0x10000000;
if (nQual<nQual0 || nIntersections>15) bOverflow=sal_True;
if (bOverflow || nQual==0xFFFFFFFF) nQual=0xFFFFFFFE;
*pnQuality=nQual;
}
if (bInfo) { // nun die Linienversaetze auf aXP1 anwenden
if (pInfo->nMiddleLine!=0xFFFF) {
sal_uInt16 nIdx=pInfo->ImpGetPolyIdx(MIDDLELINE,aXP1);
if (pInfo->ImpIsHorzLine(MIDDLELINE,aXP1)) {
aXP1[nIdx].Y()+=pInfo->aMiddleLine.Y();
aXP1[nIdx+1].Y()+=pInfo->aMiddleLine.Y();
} else {
aXP1[nIdx].X()+=pInfo->aMiddleLine.X();
aXP1[nIdx+1].X()+=pInfo->aMiddleLine.X();
}
}
if (pInfo->nObj1Lines>=2) {
sal_uInt16 nIdx=pInfo->ImpGetPolyIdx(OBJ1LINE2,aXP1);
if (pInfo->ImpIsHorzLine(OBJ1LINE2,aXP1)) {
aXP1[nIdx].Y()+=pInfo->aObj1Line2.Y();
aXP1[nIdx+1].Y()+=pInfo->aObj1Line2.Y();
} else {
aXP1[nIdx].X()+=pInfo->aObj1Line2.X();
aXP1[nIdx+1].X()+=pInfo->aObj1Line2.X();
}
}
if (pInfo->nObj1Lines>=3) {
sal_uInt16 nIdx=pInfo->ImpGetPolyIdx(OBJ1LINE3,aXP1);
if (pInfo->ImpIsHorzLine(OBJ1LINE3,aXP1)) {
aXP1[nIdx].Y()+=pInfo->aObj1Line3.Y();
aXP1[nIdx+1].Y()+=pInfo->aObj1Line3.Y();
} else {
aXP1[nIdx].X()+=pInfo->aObj1Line3.X();
aXP1[nIdx+1].X()+=pInfo->aObj1Line3.X();
}
}
if (pInfo->nObj2Lines>=2) {
sal_uInt16 nIdx=pInfo->ImpGetPolyIdx(OBJ2LINE2,aXP1);
if (pInfo->ImpIsHorzLine(OBJ2LINE2,aXP1)) {
aXP1[nIdx].Y()+=pInfo->aObj2Line2.Y();
aXP1[nIdx+1].Y()+=pInfo->aObj2Line2.Y();
} else {
aXP1[nIdx].X()+=pInfo->aObj2Line2.X();
aXP1[nIdx+1].X()+=pInfo->aObj2Line2.X();
}
}
if (pInfo->nObj2Lines>=3) {
sal_uInt16 nIdx=pInfo->ImpGetPolyIdx(OBJ2LINE3,aXP1);
if (pInfo->ImpIsHorzLine(OBJ2LINE3,aXP1)) {
aXP1[nIdx].Y()+=pInfo->aObj2Line3.Y();
aXP1[nIdx+1].Y()+=pInfo->aObj2Line3.Y();
} else {
aXP1[nIdx].X()+=pInfo->aObj2Line3.X();
aXP1[nIdx+1].X()+=pInfo->aObj2Line3.X();
}
}
}
// Nun mache ich ggf. aus dem Verbinder eine Bezierkurve
if (eKind==SDREDGE_BEZIER && nPntAnz>2) {
Point* pPt1=&aXP1[0];
Point* pPt2=&aXP1[1];
Point* pPt3=&aXP1[nPntAnz-2];
Point* pPt4=&aXP1[nPntAnz-1];
long dx1=pPt2->X()-pPt1->X();
long dy1=pPt2->Y()-pPt1->Y();
long dx2=pPt3->X()-pPt4->X();
long dy2=pPt3->Y()-pPt4->Y();
if (cForm=='L') { // nPntAnz==3
aXP1.SetFlags(1,XPOLY_CONTROL);
Point aPt3(*pPt2);
aXP1.Insert(2,aPt3,XPOLY_CONTROL);
nPntAnz=aXP1.GetPointCount();
pPt1=&aXP1[0];
pPt2=&aXP1[1];
pPt3=&aXP1[nPntAnz-2];
pPt4=&aXP1[nPntAnz-1];
pPt2->X()-=dx1/3;
pPt2->Y()-=dy1/3;
pPt3->X()-=dx2/3;
pPt3->Y()-=dy2/3;
} else if (nPntAnz>=4 && nPntAnz<=6) { // Z oder U oder ...
// fuer Alle Anderen werden die Endpunkte der Ausgangslinien
// erstmal zu Kontrollpunkten. Bei nPntAnz>4 ist also noch
// Nacharbeit erforderlich!
aXP1.SetFlags(1,XPOLY_CONTROL);
aXP1.SetFlags(nPntAnz-2,XPOLY_CONTROL);
// Distanz x1.5
pPt2->X()+=dx1/2;
pPt2->Y()+=dy1/2;
pPt3->X()+=dx2/2;
pPt3->Y()+=dy2/2;
if (nPntAnz==5) {
// Vor und hinter dem Mittelpunkt jeweils
// noch einen Kontrollpunkt einfuegen
Point aCenter(aXP1[2]);
long dx1b=aCenter.X()-aXP1[1].X();
long dy1b=aCenter.Y()-aXP1[1].Y();
long dx2b=aCenter.X()-aXP1[3].X();
long dy2b=aCenter.Y()-aXP1[3].Y();
aXP1.Insert(2,aCenter,XPOLY_CONTROL);
aXP1.SetFlags(3,XPOLY_SYMMTR);
aXP1.Insert(4,aCenter,XPOLY_CONTROL);
aXP1[2].X()-=dx1b/2;
aXP1[2].Y()-=dy1b/2;
aXP1[3].X()-=(dx1b+dx2b)/4;
aXP1[3].Y()-=(dy1b+dy2b)/4;
aXP1[4].X()-=dx2b/2;
aXP1[4].Y()-=dy2b/2;
}
if (nPntAnz==6) {
Point aPt1b(aXP1[2]);
Point aPt2b(aXP1[3]);
aXP1.Insert(2,aPt1b,XPOLY_CONTROL);
aXP1.Insert(5,aPt2b,XPOLY_CONTROL);
long dx=aPt1b.X()-aPt2b.X();
long dy=aPt1b.Y()-aPt2b.Y();
aXP1[3].X()-=dx/2;
aXP1[3].Y()-=dy/2;
aXP1.SetFlags(3,XPOLY_SYMMTR);
//aXP1[4].X()+=dx/2;
//aXP1[4].Y()+=dy/2;
aXP1.Remove(4,1); // weil identisch mit aXP1[3]
}
}
}
return aXP1;
}
/*
Nach einer einfachen Rechnung koennte es max. 64 unterschiedliche Verlaeufe mit
5 Linien, 32 mit 4 Linien, 16 mit 3, 8 mit 2 Linien und 4 mit 1 Linie geben=124.
Normalisiert auf 1. Austrittswinkel nach rechts bleiben dann noch 31.
Dann noch eine vertikale Spiegelung wegnormalisiert bleiben noch 16
characteristische Verlaufszuege mit 1-5 Linien:
Mit 1 Linie (Typ 'I'): --
Mit 2 Linien (Typ 'L'): -Ù
Mit 3 Linien (Typ 'U'): -¿ (Typ 'Z'): Ú-
-Ù -Ù
Mit 4 Linien: 1 ist nicht plausibel, 3 ist=2 (90deg Drehung). Verbleibt 2,4
Ú-Ù Ú¿ À¿ Ú¿ Ú¿ Ú-¿
-Ù -Ù -Ù -Ù -Ù -Ù
Mit 5 Linien: nicht plausibel sind 1,2,4,5. 7 ist identisch mit 3 (Richtungsumkehr)
Bleibt also 3,6 und 8. '4' 'S' 'C'
¿ Ú -¿ Ú- Ú-¿ Ú-
Ú-Ù Ú-Ù Ú-¿ Ú-¿ À¿ À¿ -Ù ³ Ú-¿ Ú-¿ À¿ Ú-¿
-Ù -Ù -Ù Ù -Ù À- -Ù -Ù --Ù À Ù -Ù Ù -Ù À Ù
Insgesamt sind also 9 Grundtypen zu unterscheiden die den 400 Konstellationen
aus Objektposition und Austrittswinkeln zuzuordnen sind.
4 der 9 Grundtypen haben eine 'Mittellinie'. Die Anzahl der zu Objektabstaende
je Objekt variiert von 0-3:
Mi O1 O2 Anmerkung
'I': n 0 0
'L': n 0 0
'U': n 0-1 0-1
'Z': j 0 0
4.1: j 0 1 = U+1 bzw. 1+U
4.2: n 0-2 0-2 = Z+1
'4': j 0 2 = Z+2
'S': j 1 1 = 1+Z+1
'C': n 0-3 0-3 = 1+U+1
*/
void __EXPORT SdrEdgeObj::Notify(SfxBroadcaster& rBC, const SfxHint& rHint)
{
SfxSimpleHint* pSimple=PTR_CAST(SfxSimpleHint,&rHint);
sal_uIntPtr nId=pSimple==0 ? 0 : pSimple->GetId();
FASTBOOL bDataChg=nId==SFX_HINT_DATACHANGED;
FASTBOOL bDying=nId==SFX_HINT_DYING;
FASTBOOL bObj1=aCon1.pObj!=NULL && aCon1.pObj->GetBroadcaster()==&rBC;
FASTBOOL bObj2=aCon2.pObj!=NULL && aCon2.pObj->GetBroadcaster()==&rBC;
if (bDying && (bObj1 || bObj2)) {
// #35605# Dying vorher abfangen, damit AttrObj nicht
// wg. vermeintlicher Vorlagenaenderung rumbroadcastet
if (bObj1) aCon1.pObj=NULL;
if (bObj2) aCon2.pObj=NULL;
return; // Und mehr braucht hier nicht getan werden.
}
if ( bObj1 || bObj2 )
{
bEdgeTrackUserDefined = sal_False;
}
SdrTextObj::Notify(rBC,rHint);
if (nNotifyingCount==0) { // Hier nun auch ein VerriegelungsFlag
((SdrEdgeObj*)this)->nNotifyingCount++;
SdrHint* pSdrHint=PTR_CAST(SdrHint,&rHint);
if (bDataChg) { // StyleSheet geaendert
ImpSetAttrToEdgeInfo(); // Werte bei Vorlagenaenderung vom Pool nach aEdgeInfo kopieren
}
if (bDataChg ||
(bObj1 && aCon1.pObj->GetPage()==pPage) ||
(bObj2 && aCon2.pObj->GetPage()==pPage) ||
(pSdrHint && pSdrHint->GetKind()==HINT_OBJREMOVED))
{
// Broadcasting nur, wenn auf der selben Page
Rectangle aBoundRect0; if (pUserCall!=NULL) aBoundRect0=GetCurrentBoundRect();
// #110094#-14 if (!bEdgeTrackDirty) SendRepaintBroadcast();
ImpDirtyEdgeTrack();
// only redraw here, no objectchange
ActionChanged();
// BroadcastObjectChange();
SendUserCall(SDRUSERCALL_RESIZE,aBoundRect0);
}
((SdrEdgeObj*)this)->nNotifyingCount--;
}
}
/** updates edges that are connected to the edges of this object
as if the connected objects send a repaint broadcast
#103122#
*/
void SdrEdgeObj::Reformat()
{
if( NULL != aCon1.pObj )
{
SfxSimpleHint aHint( SFX_HINT_DATACHANGED );
Notify( *const_cast<SfxBroadcaster*>(aCon1.pObj->GetBroadcaster()), aHint );
}
if( NULL != aCon2.pObj )
{
SfxSimpleHint aHint( SFX_HINT_DATACHANGED );
Notify( *const_cast<SfxBroadcaster*>(aCon2.pObj->GetBroadcaster()), aHint );
}
}
void SdrEdgeObj::operator=(const SdrObject& rObj)
{
SdrTextObj::operator=(rObj);
*pEdgeTrack =*((SdrEdgeObj&)rObj).pEdgeTrack;
bEdgeTrackDirty=((SdrEdgeObj&)rObj).bEdgeTrackDirty;
aCon1 =((SdrEdgeObj&)rObj).aCon1;
aCon2 =((SdrEdgeObj&)rObj).aCon2;
aCon1.pObj=NULL;
aCon2.pObj=NULL;
aEdgeInfo=((SdrEdgeObj&)rObj).aEdgeInfo;
}
void SdrEdgeObj::TakeObjNameSingul(XubString& rName) const
{
rName=ImpGetResStr(STR_ObjNameSingulEDGE);
String aName( GetName() );
if(aName.Len())
{
rName += sal_Unicode(' ');
rName += sal_Unicode('\'');
rName += aName;
rName += sal_Unicode('\'');
}
}
void SdrEdgeObj::TakeObjNamePlural(XubString& rName) const
{
rName=ImpGetResStr(STR_ObjNamePluralEDGE);
}
basegfx::B2DPolyPolygon SdrEdgeObj::TakeXorPoly() const
{
basegfx::B2DPolyPolygon aPolyPolygon;
if (bEdgeTrackDirty)
{
((SdrEdgeObj*)this)->ImpRecalcEdgeTrack();
}
if(pEdgeTrack)
{
aPolyPolygon.append(pEdgeTrack->getB2DPolygon());
}
return aPolyPolygon;
}
void SdrEdgeObj::SetEdgeTrackPath( const basegfx::B2DPolyPolygon& rPoly )
{
if ( !rPoly.count() )
{
bEdgeTrackDirty = sal_True;
bEdgeTrackUserDefined = sal_False;
}
else
{
*pEdgeTrack = XPolygon( rPoly.getB2DPolygon( 0 ) );
bEdgeTrackDirty = sal_False;
bEdgeTrackUserDefined = sal_True;
// #i110629# also set aRect and maSnapeRect dependent from pEdgeTrack
const Rectangle aPolygonBounds(pEdgeTrack->GetBoundRect());
aRect = aPolygonBounds;
maSnapRect = aPolygonBounds;
}
}
basegfx::B2DPolyPolygon SdrEdgeObj::GetEdgeTrackPath() const
{
basegfx::B2DPolyPolygon aPolyPolygon;
if (bEdgeTrackDirty)
((SdrEdgeObj*)this)->ImpRecalcEdgeTrack();
aPolyPolygon.append( pEdgeTrack->getB2DPolygon() );
return aPolyPolygon;
}
sal_uInt32 SdrEdgeObj::GetHdlCount() const
{
SdrEdgeKind eKind=((SdrEdgeKindItem&)(GetObjectItem(SDRATTR_EDGEKIND))).GetValue();
sal_uInt32 nHdlAnz(0L);
sal_uInt32 nPntAnz(pEdgeTrack->GetPointCount());
if(nPntAnz)
{
nHdlAnz = 2L;
if ((eKind==SDREDGE_ORTHOLINES || eKind==SDREDGE_BEZIER) && nPntAnz >= 4L)
{
sal_uInt32 nO1(aEdgeInfo.nObj1Lines > 0L ? aEdgeInfo.nObj1Lines - 1L : 0L);
sal_uInt32 nO2(aEdgeInfo.nObj2Lines > 0L ? aEdgeInfo.nObj2Lines - 1L : 0L);
sal_uInt32 nM(aEdgeInfo.nMiddleLine != 0xFFFF ? 1L : 0L);
nHdlAnz += nO1 + nO2 + nM;
}
else if (eKind==SDREDGE_THREELINES && nPntAnz == 4L)
{
if(GetConnectedNode(sal_True))
nHdlAnz++;
if(GetConnectedNode(sal_False))
nHdlAnz++;
}
}
return nHdlAnz;
}
SdrHdl* SdrEdgeObj::GetHdl(sal_uInt32 nHdlNum) const
{
SdrHdl* pHdl=NULL;
sal_uInt32 nPntAnz(pEdgeTrack->GetPointCount());
if (nPntAnz!=0) {
if (nHdlNum==0) {
pHdl=new ImpEdgeHdl((*pEdgeTrack)[0],HDL_POLY);
if (aCon1.pObj!=NULL && aCon1.bBestVertex) pHdl->Set1PixMore(sal_True);
} else if (nHdlNum==1) {
pHdl=new ImpEdgeHdl((*pEdgeTrack)[sal_uInt16(nPntAnz-1)],HDL_POLY);
if (aCon2.pObj!=NULL && aCon2.bBestVertex) pHdl->Set1PixMore(sal_True);
} else {
SdrEdgeKind eKind=((SdrEdgeKindItem&)(GetObjectItem(SDRATTR_EDGEKIND))).GetValue();
if (eKind==SDREDGE_ORTHOLINES || eKind==SDREDGE_BEZIER) {
sal_uInt32 nO1(aEdgeInfo.nObj1Lines > 0L ? aEdgeInfo.nObj1Lines - 1L : 0L);
sal_uInt32 nO2(aEdgeInfo.nObj2Lines > 0L ? aEdgeInfo.nObj2Lines - 1L : 0L);
sal_uInt32 nM(aEdgeInfo.nMiddleLine != 0xFFFF ? 1L : 0L);
sal_uInt32 nNum(nHdlNum - 2L);
sal_Int32 nPt(0L);
pHdl=new ImpEdgeHdl(Point(),HDL_POLY);
if (nNum<nO1) {
nPt=nNum+1L;
if (nNum==0) ((ImpEdgeHdl*)pHdl)->SetLineCode(OBJ1LINE2);
if (nNum==1) ((ImpEdgeHdl*)pHdl)->SetLineCode(OBJ1LINE3);
} else {
nNum=nNum-nO1;
if (nNum<nO2) {
nPt=nPntAnz-3-nNum;
if (nNum==0) ((ImpEdgeHdl*)pHdl)->SetLineCode(OBJ2LINE2);
if (nNum==1) ((ImpEdgeHdl*)pHdl)->SetLineCode(OBJ2LINE3);
} else {
nNum=nNum-nO2;
if (nNum<nM) {
nPt=aEdgeInfo.nMiddleLine;
((ImpEdgeHdl*)pHdl)->SetLineCode(MIDDLELINE);
}
}
}
if (nPt>0) {
Point aPos((*pEdgeTrack)[(sal_uInt16)nPt]);
aPos+=(*pEdgeTrack)[(sal_uInt16)nPt+1];
aPos.X()/=2;
aPos.Y()/=2;
pHdl->SetPos(aPos);
} else {
delete pHdl;
pHdl=NULL;
}
} else if (eKind==SDREDGE_THREELINES) {
sal_uInt32 nNum(nHdlNum);
if (GetConnectedNode(sal_True)==NULL) nNum++;
Point aPos((*pEdgeTrack)[(sal_uInt16)nNum-1]);
pHdl=new ImpEdgeHdl(aPos,HDL_POLY);
if (nNum==2) ((ImpEdgeHdl*)pHdl)->SetLineCode(OBJ1LINE2);
if (nNum==3) ((ImpEdgeHdl*)pHdl)->SetLineCode(OBJ2LINE2);
}
}
if (pHdl!=NULL) {
pHdl->SetPointNum(nHdlNum);
}
}
return pHdl;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
bool SdrEdgeObj::hasSpecialDrag() const
{
return true;
}
SdrObject* SdrEdgeObj::getFullDragClone() const
{
// use Clone operator
SdrEdgeObj* pRetval = (SdrEdgeObj*)Clone();
// copy connections for clone, SdrEdgeObj::operator= does not do this
pRetval->ConnectToNode(true, GetConnectedNode(true));
pRetval->ConnectToNode(false, GetConnectedNode(false));
return pRetval;
}
bool SdrEdgeObj::beginSpecialDrag(SdrDragStat& rDrag) const
{
if(!rDrag.GetHdl())
return false;
rDrag.SetEndDragChangesAttributes(true);
if(rDrag.GetHdl()->GetPointNum() < 2)
{
rDrag.SetNoSnap(true);
}
return true;
}
bool SdrEdgeObj::applySpecialDrag(SdrDragStat& rDragStat)
{
SdrEdgeObj* pOriginalEdge = dynamic_cast< SdrEdgeObj* >(rDragStat.GetHdl()->GetObj());
const bool bOriginalEdgeModified(pOriginalEdge == this);
if(!bOriginalEdgeModified && pOriginalEdge)
{
// copy connections when clone is modified. This is needed because
// as preparation to this modification the data from the original object
// was copied to the clone using the operator=. As can be seen there,
// that operator does not copy the connections (for good reason)
ConnectToNode(true, pOriginalEdge->GetConnection(true).GetObject());
ConnectToNode(false, pOriginalEdge->GetConnection(false).GetObject());
}
if(rDragStat.GetHdl()->GetPointNum() < 2)
{
// start or end point connector drag
const bool bDragA(0 == rDragStat.GetHdl()->GetPointNum());
const Point aPointNow(rDragStat.GetNow());
if(rDragStat.GetPageView())
{
SdrObjConnection* pDraggedOne(bDragA ? &aCon1 : &aCon2);
// clear connection
DisconnectFromNode(bDragA);
// look for new connection
ImpFindConnector(aPointNow, *rDragStat.GetPageView(), *pDraggedOne, pOriginalEdge);
if(pDraggedOne->pObj)
{
// if found, officially connect to it; ImpFindConnector only
// sets pObj hard
SdrObject* pNewConnection = pDraggedOne->pObj;
pDraggedOne->pObj = 0;
ConnectToNode(bDragA, pNewConnection);
}
if(rDragStat.GetView() && !bOriginalEdgeModified)
{
// show IA helper, but only do this during IA, so not when the original
// Edge gets modified in the last call
rDragStat.GetView()->SetConnectMarker(*pDraggedOne, *rDragStat.GetPageView());
}
}
if(pEdgeTrack)
{
// change pEdgeTrack to modified position
if(bDragA)
{
(*pEdgeTrack)[0] = aPointNow;
}
else
{
(*pEdgeTrack)[sal_uInt16(pEdgeTrack->GetPointCount()-1)] = aPointNow;
}
}
// reset edge info's offsets, this is a end point drag
aEdgeInfo.aObj1Line2 = Point();
aEdgeInfo.aObj1Line3 = Point();
aEdgeInfo.aObj2Line2 = Point();
aEdgeInfo.aObj2Line3 = Point();
aEdgeInfo.aMiddleLine = Point();
}
else
{
// control point connector drag
const ImpEdgeHdl* pEdgeHdl = (ImpEdgeHdl*)rDragStat.GetHdl();
const SdrEdgeLineCode eLineCode = pEdgeHdl->GetLineCode();
const Point aDist(rDragStat.GetNow() - rDragStat.GetStart());
sal_Int32 nDist(pEdgeHdl->IsHorzDrag() ? aDist.X() : aDist.Y());
nDist += aEdgeInfo.ImpGetLineVersatz(eLineCode, *pEdgeTrack);
aEdgeInfo.ImpSetLineVersatz(eLineCode, *pEdgeTrack, nDist);
}
// force recalc EdgeTrack
*pEdgeTrack = ImpCalcEdgeTrack(*pEdgeTrack, aCon1, aCon2, &aEdgeInfo);
bEdgeTrackDirty=sal_False;
// save EdgeInfos and mark object as user modified
ImpSetEdgeInfoToAttr();
bEdgeTrackUserDefined = false;
SetRectsDirty();
//SetChanged();
if(bOriginalEdgeModified && rDragStat.GetView())
{
// hide connect marker helper again when original gets changed.
// This happens at the end of the interaction
rDragStat.GetView()->HideConnectMarker();
}
return true;
}
String SdrEdgeObj::getSpecialDragComment(const SdrDragStat& rDrag) const
{
const bool bCreateComment(rDrag.GetView() && this == rDrag.GetView()->GetCreateObj());
if(bCreateComment)
{
return String();
}
else
{
XubString aStr;
ImpTakeDescriptionStr(STR_DragEdgeTail, aStr);
return aStr;
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
basegfx::B2DPolygon SdrEdgeObj::ImplAddConnectorOverlay(SdrDragMethod& rDragMethod, bool bTail1, bool bTail2, bool bDetail) const
{
basegfx::B2DPolygon aResult;
if(bDetail)
{
SdrObjConnection aMyCon1(aCon1);
SdrObjConnection aMyCon2(aCon2);
if (bTail1)
{
const basegfx::B2DPoint aTemp(rDragMethod.getCurrentTransformation() * basegfx::B2DPoint(aMyCon1.aObjOfs.X(), aMyCon1.aObjOfs.Y()));
aMyCon1.aObjOfs.X() = basegfx::fround(aTemp.getX());
aMyCon1.aObjOfs.Y() = basegfx::fround(aTemp.getY());
}
if (bTail2)
{
const basegfx::B2DPoint aTemp(rDragMethod.getCurrentTransformation() * basegfx::B2DPoint(aMyCon2.aObjOfs.X(), aMyCon2.aObjOfs.Y()));
aMyCon2.aObjOfs.X() = basegfx::fround(aTemp.getX());
aMyCon2.aObjOfs.Y() = basegfx::fround(aTemp.getY());
}
SdrEdgeInfoRec aInfo(aEdgeInfo);
XPolygon aXP(ImpCalcEdgeTrack(*pEdgeTrack, aMyCon1, aMyCon2, &aInfo));
if(aXP.GetPointCount())
{
aResult = aXP.getB2DPolygon();
}
}
else
{
Point aPt1((*pEdgeTrack)[0]);
Point aPt2((*pEdgeTrack)[sal_uInt16(pEdgeTrack->GetPointCount() - 1)]);
if (aCon1.pObj && (aCon1.bBestConn || aCon1.bBestVertex))
aPt1 = aCon1.pObj->GetSnapRect().Center();
if (aCon2.pObj && (aCon2.bBestConn || aCon2.bBestVertex))
aPt2 = aCon2.pObj->GetSnapRect().Center();
if (bTail1)
{
const basegfx::B2DPoint aTemp(rDragMethod.getCurrentTransformation() * basegfx::B2DPoint(aPt1.X(), aPt1.Y()));
aPt1.X() = basegfx::fround(aTemp.getX());
aPt1.Y() = basegfx::fround(aTemp.getY());
}
if (bTail2)
{
const basegfx::B2DPoint aTemp(rDragMethod.getCurrentTransformation() * basegfx::B2DPoint(aPt2.X(), aPt2.Y()));
aPt2.X() = basegfx::fround(aTemp.getX());
aPt2.Y() = basegfx::fround(aTemp.getY());
}
aResult.append(basegfx::B2DPoint(aPt1.X(), aPt1.Y()));
aResult.append(basegfx::B2DPoint(aPt2.X(), aPt2.Y()));
}
return aResult;
}
FASTBOOL SdrEdgeObj::BegCreate(SdrDragStat& rDragStat)
{
rDragStat.SetNoSnap(sal_True);
pEdgeTrack->SetPointCount(2);
(*pEdgeTrack)[0]=rDragStat.GetStart();
(*pEdgeTrack)[1]=rDragStat.GetNow();
if (rDragStat.GetPageView()!=NULL) {
ImpFindConnector(rDragStat.GetStart(),*rDragStat.GetPageView(),aCon1,this);
ConnectToNode(sal_True,aCon1.pObj);
}
*pEdgeTrack=ImpCalcEdgeTrack(*pEdgeTrack,aCon1,aCon2,&aEdgeInfo);
return sal_True;
}
FASTBOOL SdrEdgeObj::MovCreate(SdrDragStat& rDragStat)
{
sal_uInt16 nMax=pEdgeTrack->GetPointCount();
(*pEdgeTrack)[nMax-1]=rDragStat.GetNow();
if (rDragStat.GetPageView()!=NULL) {
ImpFindConnector(rDragStat.GetNow(),*rDragStat.GetPageView(),aCon2,this);
rDragStat.GetView()->SetConnectMarker(aCon2,*rDragStat.GetPageView());
}
SetBoundRectDirty();
bSnapRectDirty=sal_True;
ConnectToNode(sal_False,aCon2.pObj);
*pEdgeTrack=ImpCalcEdgeTrack(*pEdgeTrack,aCon1,aCon2,&aEdgeInfo);
bEdgeTrackDirty=sal_False;
return sal_True;
}
FASTBOOL SdrEdgeObj::EndCreate(SdrDragStat& rDragStat, SdrCreateCmd eCmd)
{
FASTBOOL bOk=(eCmd==SDRCREATE_FORCEEND || rDragStat.GetPointAnz()>=2);
if (bOk) {
ConnectToNode(sal_True,aCon1.pObj);
ConnectToNode(sal_False,aCon2.pObj);
if (rDragStat.GetView()!=NULL) {
rDragStat.GetView()->HideConnectMarker();
}
ImpSetEdgeInfoToAttr(); // Die Werte aus aEdgeInfo in den Pool kopieren
}
SetRectsDirty();
return bOk;
}
FASTBOOL SdrEdgeObj::BckCreate(SdrDragStat& rDragStat)
{
if (rDragStat.GetView()!=NULL) {
rDragStat.GetView()->HideConnectMarker();
}
return sal_False;
}
void SdrEdgeObj::BrkCreate(SdrDragStat& rDragStat)
{
if (rDragStat.GetView()!=NULL) {
rDragStat.GetView()->HideConnectMarker();
}
}
basegfx::B2DPolyPolygon SdrEdgeObj::TakeCreatePoly(const SdrDragStat& /*rStatDrag*/) const
{
basegfx::B2DPolyPolygon aRetval;
aRetval.append(pEdgeTrack->getB2DPolygon());
return aRetval;
}
Pointer SdrEdgeObj::GetCreatePointer() const
{
return Pointer(POINTER_DRAW_CONNECT);
}
FASTBOOL SdrEdgeObj::ImpFindConnector(const Point& rPt, const SdrPageView& rPV, SdrObjConnection& rCon, const SdrEdgeObj* pThis, OutputDevice* pOut)
{
rCon.ResetVars();
if (pOut==NULL) pOut=rPV.GetView().GetFirstOutputDevice(); // GetWin(0);
if (pOut==NULL) return sal_False;
SdrObjList* pOL=rPV.GetObjList();
const SetOfByte& rVisLayer=rPV.GetVisibleLayers();
// Sensitiver Bereich der Konnektoren ist doppelt so gross wie die Handles:
sal_uInt16 nMarkHdSiz=rPV.GetView().GetMarkHdlSizePixel();
Size aHalfConSiz(nMarkHdSiz,nMarkHdSiz);
aHalfConSiz=pOut->PixelToLogic(aHalfConSiz);
Size aHalfCenterSiz(2*aHalfConSiz.Width(),2*aHalfConSiz.Height());
Rectangle aMouseRect(rPt,rPt);
aMouseRect.Left() -=aHalfConSiz.Width();
aMouseRect.Top() -=aHalfConSiz.Height();
aMouseRect.Right() +=aHalfConSiz.Width();
aMouseRect.Bottom()+=aHalfConSiz.Height();
sal_uInt16 nBoundHitTol=(sal_uInt16)aHalfConSiz.Width()/2; if (nBoundHitTol==0) nBoundHitTol=1;
sal_uIntPtr no=pOL->GetObjCount();
FASTBOOL bFnd=sal_False;
SdrObjConnection aTestCon;
SdrObjConnection aBestCon;
FASTBOOL bTestBoundHit=sal_False;
//int bBestBoundHit=sal_False;
while (no>0 && !bFnd) {
// Problem: Gruppenobjekt mit verschiedenen Layern liefert LayerID 0 !!!!
no--;
SdrObject* pObj=pOL->GetObj(no);
if (rVisLayer.IsSet(pObj->GetLayer()) && pObj->IsVisible() && // only visible objects
(pThis==NULL || pObj!=(SdrObject*)pThis) && // nicht an mich selbst connecten
pObj->IsNode())
{
Rectangle aObjBound(pObj->GetCurrentBoundRect());
if (aObjBound.IsOver(aMouseRect)) {
aTestCon.ResetVars();
bTestBoundHit=sal_False;
FASTBOOL bEdge=HAS_BASE(SdrEdgeObj,pObj); // kein BestCon fuer Edge
// Die Userdefined Konnektoren haben absolute Prioritaet.
// Danach kommt Vertex, Corner und Mitte(Best) gleich priorisiert.
// Zum Schluss kommt noch ein HitTest aufs Obj.
const SdrGluePointList* pGPL=pObj->GetGluePointList();
sal_uInt16 nConAnz=pGPL==NULL ? 0 : pGPL->GetCount();
sal_uInt16 nGesAnz=nConAnz+9;
FASTBOOL bUserFnd=sal_False;
sal_uIntPtr nBestDist=0xFFFFFFFF;
for (sal_uInt16 i=0; i<nGesAnz; i++)
{
FASTBOOL bUser=i<nConAnz;
FASTBOOL bVertex=i>=nConAnz+0 && i<nConAnz+4;
FASTBOOL bCorner=i>=nConAnz+4 && i<nConAnz+8;
FASTBOOL bCenter=i==nConAnz+8;
FASTBOOL bOk=sal_False;
Point aConPos;
sal_uInt16 nConNum=i;
if (bUser) {
const SdrGluePoint& rGP=(*pGPL)[nConNum];
aConPos=rGP.GetAbsolutePos(*pObj);
nConNum=rGP.GetId();
bOk=sal_True;
} else if (bVertex && !bUserFnd) {
nConNum=nConNum-nConAnz;
if (rPV.GetView().IsAutoVertexConnectors()) {
SdrGluePoint aPt(pObj->GetVertexGluePoint(nConNum));
aConPos=aPt.GetAbsolutePos(*pObj);
bOk=sal_True;
} else i+=3;
} else if (bCorner && !bUserFnd) {
nConNum-=nConAnz+4;
if (rPV.GetView().IsAutoCornerConnectors()) {
SdrGluePoint aPt(pObj->GetCornerGluePoint(nConNum));
aConPos=aPt.GetAbsolutePos(*pObj);
bOk=sal_True;
} else i+=3;
}
else if (bCenter && !bUserFnd && !bEdge)
{
// #109007#
// Suppress default connect at object center
if(!pThis || !pThis->GetSuppressDefaultConnect())
{
// Edges nicht!
nConNum=0;
aConPos=aObjBound.Center();
bOk=sal_True;
}
}
if (bOk && aMouseRect.IsInside(aConPos)) {
if (bUser) bUserFnd=sal_True;
bFnd=sal_True;
sal_uIntPtr nDist=(sal_uIntPtr)Abs(aConPos.X()-rPt.X())+(sal_uIntPtr)Abs(aConPos.Y()-rPt.Y());
if (nDist<nBestDist) {
nBestDist=nDist;
aTestCon.pObj=pObj;
aTestCon.nConId=nConNum;
aTestCon.bAutoCorner=bCorner;
aTestCon.bAutoVertex=bVertex;
aTestCon.bBestConn=sal_False; // bCenter;
aTestCon.bBestVertex=bCenter;
}
}
}
// Falls kein Konnektor getroffen wird nochmal
// HitTest versucht fuer BestConnector (=bCenter)
if(!bFnd &&
!bEdge &&
SdrObjectPrimitiveHit(*pObj, rPt, nBoundHitTol, rPV, &rVisLayer, false))
{
// #109007#
// Suppress default connect at object inside bound
if(!pThis || !pThis->GetSuppressDefaultConnect())
{
bFnd=sal_True;
aTestCon.pObj=pObj;
aTestCon.bBestConn=sal_True;
}
}
if (bFnd) {
Rectangle aMouseRect2(rPt,rPt);
aMouseRect.Left() -=nBoundHitTol;
aMouseRect.Top() -=nBoundHitTol;
aMouseRect.Right() +=nBoundHitTol;
aMouseRect.Bottom()+=nBoundHitTol;
bTestBoundHit=aObjBound.IsOver(aMouseRect2);
}
}
}
}
rCon=aTestCon;
return bFnd;
}
void SdrEdgeObj::NbcSetSnapRect(const Rectangle& rRect)
{
const Rectangle aOld(GetSnapRect());
if(aOld != rRect)
{
if(aRect.IsEmpty() && 0 == pEdgeTrack->GetPointCount())
{
// #i110629# When initializing, do not scale on empty Rectangle; this
// will mirror the underlying text object (!)
aRect = rRect;
maSnapRect = rRect;
}
else
{
long nMulX = rRect.Right() - rRect.Left();
long nDivX = aOld.Right() - aOld.Left();
long nMulY = rRect.Bottom() - rRect.Top();
long nDivY = aOld.Bottom() - aOld.Top();
if ( nDivX == 0 ) { nMulX = 1; nDivX = 1; }
if ( nDivY == 0 ) { nMulY = 1; nDivY = 1; }
Fraction aX(nMulX, nDivX);
Fraction aY(nMulY, nDivY);
NbcResize(aOld.TopLeft(), aX, aY);
NbcMove(Size(rRect.Left() - aOld.Left(), rRect.Top() - aOld.Top()));
}
}
}
void SdrEdgeObj::NbcMove(const Size& rSiz)
{
SdrTextObj::NbcMove(rSiz);
MoveXPoly(*pEdgeTrack,rSiz);
}
void SdrEdgeObj::NbcResize(const Point& rRefPnt, const Fraction& aXFact, const Fraction& aYFact)
{
SdrTextObj::NbcResize(rRefPnt,aXFact,aXFact);
ResizeXPoly(*pEdgeTrack,rRefPnt,aXFact,aYFact);
// #75371# if resize is not from paste, forget user distances
if(!GetModel()->IsPasteResize())
{
// #75735#
aEdgeInfo.aObj1Line2 = Point();
aEdgeInfo.aObj1Line3 = Point();
aEdgeInfo.aObj2Line2 = Point();
aEdgeInfo.aObj2Line3 = Point();
aEdgeInfo.aMiddleLine = Point();
}
}
// #54102# added rotation support
void SdrEdgeObj::NbcRotate(const Point& rRef, long nWink, double sn, double cs)
{
if(bEdgeTrackUserDefined)
{
// #120437# special handling when track is imported, apply
// transformation directly to imported track.
SdrTextObj::NbcRotate(rRef, nWink, sn, cs);
RotateXPoly(*pEdgeTrack, rRef, sn, cs);
}
else
{
// handle start and end point if not connected
FASTBOOL bCon1=aCon1.pObj!=NULL && aCon1.pObj->GetPage()==pPage;
FASTBOOL bCon2=aCon2.pObj!=NULL && aCon2.pObj->GetPage()==pPage;
if(!bCon1 && pEdgeTrack)
{
RotatePoint((*pEdgeTrack)[0],rRef,sn,cs);
ImpDirtyEdgeTrack();
}
if(!bCon2 && pEdgeTrack)
{
sal_uInt16 nPntAnz = pEdgeTrack->GetPointCount();
RotatePoint((*pEdgeTrack)[sal_uInt16(nPntAnz-1)],rRef,sn,cs);
ImpDirtyEdgeTrack();
}
}
}
// #54102# added mirror support
void SdrEdgeObj::NbcMirror(const Point& rRef1, const Point& rRef2)
{
if(bEdgeTrackUserDefined)
{
// #120437# special handling when track is imported, apply
// transformation directly to imported track.
SdrTextObj::NbcMirror(rRef1, rRef2);
MirrorXPoly(*pEdgeTrack, rRef1, rRef2);
}
else
{
// handle start and end point if not connected
FASTBOOL bCon1=aCon1.pObj!=NULL && aCon1.pObj->GetPage()==pPage;
FASTBOOL bCon2=aCon2.pObj!=NULL && aCon2.pObj->GetPage()==pPage;
if(!bCon1 && pEdgeTrack)
{
MirrorPoint((*pEdgeTrack)[0],rRef1,rRef2);
ImpDirtyEdgeTrack();
}
if(!bCon2 && pEdgeTrack)
{
sal_uInt16 nPntAnz = pEdgeTrack->GetPointCount();
MirrorPoint((*pEdgeTrack)[sal_uInt16(nPntAnz-1)],rRef1,rRef2);
ImpDirtyEdgeTrack();
}
}
}
// #54102# added shear support
void SdrEdgeObj::NbcShear(const Point& rRef, long nWink, double tn, FASTBOOL bVShear)
{
if(bEdgeTrackUserDefined)
{
// #120437# special handling when track is imported, apply
// transformation directly to imported track.
SdrTextObj::NbcShear(rRef, nWink, tn, bVShear);
ShearXPoly(*pEdgeTrack, rRef, tn, bVShear);
}
else
{
// handle start and end point if not connected
FASTBOOL bCon1=aCon1.pObj!=NULL && aCon1.pObj->GetPage()==pPage;
FASTBOOL bCon2=aCon2.pObj!=NULL && aCon2.pObj->GetPage()==pPage;
if(!bCon1 && pEdgeTrack)
{
ShearPoint((*pEdgeTrack)[0],rRef,tn,bVShear);
ImpDirtyEdgeTrack();
}
if(!bCon2 && pEdgeTrack)
{
sal_uInt16 nPntAnz = pEdgeTrack->GetPointCount();
ShearPoint((*pEdgeTrack)[sal_uInt16(nPntAnz-1)],rRef,tn,bVShear);
ImpDirtyEdgeTrack();
}
}
}
SdrObject* SdrEdgeObj::DoConvertToPolyObj(sal_Bool bBezier, bool bAddText) const
{
basegfx::B2DPolyPolygon aPolyPolygon;
aPolyPolygon.append(pEdgeTrack->getB2DPolygon());
SdrObject* pRet = ImpConvertMakeObj(aPolyPolygon, sal_False, bBezier);
if(bAddText)
{
pRet = ImpConvertAddText(pRet, bBezier);
}
return pRet;
}
sal_uInt32 SdrEdgeObj::GetSnapPointCount() const
{
return 2L;
}
Point SdrEdgeObj::GetSnapPoint(sal_uInt32 i) const
{
((SdrEdgeObj*)this)->ImpUndirtyEdgeTrack();
sal_uInt16 nAnz=pEdgeTrack->GetPointCount();
if (i==0) return (*pEdgeTrack)[0];
else return (*pEdgeTrack)[nAnz-1];
}
sal_Bool SdrEdgeObj::IsPolyObj() const
{
return sal_False;
}
sal_uInt32 SdrEdgeObj::GetPointCount() const
{
return 0L;
}
Point SdrEdgeObj::GetPoint(sal_uInt32 i) const
{
((SdrEdgeObj*)this)->ImpUndirtyEdgeTrack();
sal_uInt16 nAnz=pEdgeTrack->GetPointCount();
if (0L == i)
return (*pEdgeTrack)[0];
else
return (*pEdgeTrack)[nAnz-1];
}
void SdrEdgeObj::NbcSetPoint(const Point& rPnt, sal_uInt32 i)
{
// ToDo: Umconnekten fehlt noch
ImpUndirtyEdgeTrack();
sal_uInt16 nAnz=pEdgeTrack->GetPointCount();
if (0L == i)
(*pEdgeTrack)[0]=rPnt;
if (1L == i)
(*pEdgeTrack)[nAnz-1]=rPnt;
SetEdgeTrackDirty();
SetRectsDirty();
}
SdrEdgeObjGeoData::SdrEdgeObjGeoData()
{
pEdgeTrack=new XPolygon;
}
SdrEdgeObjGeoData::~SdrEdgeObjGeoData()
{
delete pEdgeTrack;
}
SdrObjGeoData* SdrEdgeObj::NewGeoData() const
{
return new SdrEdgeObjGeoData;
}
void SdrEdgeObj::SaveGeoData(SdrObjGeoData& rGeo) const
{
SdrTextObj::SaveGeoData(rGeo);
SdrEdgeObjGeoData& rEGeo=(SdrEdgeObjGeoData&)rGeo;
rEGeo.aCon1 =aCon1;
rEGeo.aCon2 =aCon2;
*rEGeo.pEdgeTrack =*pEdgeTrack;
rEGeo.bEdgeTrackDirty=bEdgeTrackDirty;
rEGeo.bEdgeTrackUserDefined=bEdgeTrackUserDefined;
rEGeo.aEdgeInfo =aEdgeInfo;
}
void SdrEdgeObj::RestGeoData(const SdrObjGeoData& rGeo)
{
SdrTextObj::RestGeoData(rGeo);
SdrEdgeObjGeoData& rEGeo=(SdrEdgeObjGeoData&)rGeo;
if (aCon1.pObj!=rEGeo.aCon1.pObj) {
if (aCon1.pObj!=NULL) aCon1.pObj->RemoveListener(*this);
aCon1=rEGeo.aCon1;
if (aCon1.pObj!=NULL) aCon1.pObj->AddListener(*this);
}
if (aCon2.pObj!=rEGeo.aCon2.pObj) {
if (aCon2.pObj!=NULL) aCon2.pObj->RemoveListener(*this);
aCon2=rEGeo.aCon2;
if (aCon2.pObj!=NULL) aCon2.pObj->AddListener(*this);
}
*pEdgeTrack =*rEGeo.pEdgeTrack;
bEdgeTrackDirty=rEGeo.bEdgeTrackDirty;
bEdgeTrackUserDefined=rEGeo.bEdgeTrackUserDefined;
aEdgeInfo =rEGeo.aEdgeInfo;
}
Point SdrEdgeObj::GetTailPoint( sal_Bool bTail ) const
{
if( pEdgeTrack && pEdgeTrack->GetPointCount()!=0)
{
const XPolygon& rTrack0 = *pEdgeTrack;
if(bTail)
{
return rTrack0[0];
}
else
{
const sal_uInt16 nSiz = rTrack0.GetPointCount() - 1;
return rTrack0[nSiz];
}
}
else
{
if(bTail)
return aOutRect.TopLeft();
else
return aOutRect.BottomRight();
}
}
void SdrEdgeObj::SetTailPoint( sal_Bool bTail, const Point& rPt )
{
ImpSetTailPoint( bTail, rPt );
SetChanged();
}
/** this method is used by the api to set a glue point for a connection
nId == -1 : The best default point is automaticly choosen
0 <= nId <= 3 : One of the default points is choosen
nId >= 4 : A user defined glue point is choosen
*/
void SdrEdgeObj::setGluePointIndex( sal_Bool bTail, sal_Int32 nIndex /* = -1 */ )
{
Rectangle aBoundRect0; if (pUserCall!=NULL) aBoundRect0=GetCurrentBoundRect();
// #110094#-14 BroadcastObjectChange();
SdrObjConnection& rConn1 = GetConnection( bTail );
rConn1.SetAutoVertex( nIndex >= 0 && nIndex <= 3 );
rConn1.SetBestConnection( nIndex < 0 );
rConn1.SetBestVertex( nIndex < 0 );
if( nIndex > 3 )
{
// nIndex -= 4;
nIndex -= 3; // SJ: the start api index is 0, whereas the implementation in svx starts from 1
// for user defined glue points we have
// to get the id for this index first
const SdrGluePointList* pList = rConn1.GetObject() ? rConn1.GetObject()->GetGluePointList() : NULL;
if( pList == NULL || SDRGLUEPOINT_NOTFOUND == pList->FindGluePoint((sal_uInt16)nIndex) )
return;
}
else if( nIndex < 0 )
{
nIndex = 0;
}
rConn1.SetConnectorId( (sal_uInt16)nIndex );
SetChanged();
SetRectsDirty();
ImpRecalcEdgeTrack();
// bEdgeTrackDirty=sal_True;
}
/** this method is used by the api to return a glue point id for a connection.
See setGluePointId for possible return values */
sal_Int32 SdrEdgeObj::getGluePointIndex( sal_Bool bTail )
{
SdrObjConnection& rConn1 = GetConnection( bTail );
sal_Int32 nId = -1;
if( !rConn1.IsBestConnection() )
{
nId = rConn1.GetConnectorId();
if( !rConn1.IsAutoVertex() )
// nId += 4;
nId += 3; // SJ: the start api index is 0, whereas the implementation in svx starts from 1
}
return nId;
}
// #102344# Implementation was missing; edge track needs to be invalidated additionally.
void SdrEdgeObj::NbcSetAnchorPos(const Point& rPnt)
{
// call parent functionality
SdrTextObj::NbcSetAnchorPos(rPnt);
// Additionally, invalidate edge track
ImpDirtyEdgeTrack();
}
sal_Bool SdrEdgeObj::TRGetBaseGeometry(basegfx::B2DHomMatrix& rMatrix, basegfx::B2DPolyPolygon& rPolyPolygon) const
{
// use base method from SdrObject, it's not rotatable and
// a call to GetSnapRect() is used. That's what we need for Connector.
return SdrObject::TRGetBaseGeometry(rMatrix, rPolyPolygon);
}
void SdrEdgeObj::TRSetBaseGeometry(const basegfx::B2DHomMatrix& rMatrix, const basegfx::B2DPolyPolygon& rPolyPolygon)
{
// evtl. take care for existing connections. For now, just use the
// implementation from SdrObject.
SdrObject::TRSetBaseGeometry(rMatrix, rPolyPolygon);
}
// for geometry access
::basegfx::B2DPolygon SdrEdgeObj::getEdgeTrack() const
{
if(bEdgeTrackDirty)
{
const_cast< SdrEdgeObj* >(this)->ImpRecalcEdgeTrack();
}
if(pEdgeTrack)
{
return pEdgeTrack->getB2DPolygon();
}
else
{
return ::basegfx::B2DPolygon();
}
}
//////////////////////////////////////////////////////////////////////////////
// eof