blob: a085760f6cbc758fcc9384cd02c381d72e8f1323 [file] [log] [blame]
/**************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_svx.hxx"
#include "svx/EnhancedCustomShape2d.hxx"
#include <rtl/ustring.hxx>
#include <tools/fract.hxx>
// Makes parser a static resource,
// we're synchronized externally.
// But watch out, the parser might have
// state not visible to this code!
#define BOOST_SPIRIT_SINGLE_GRAMMAR_INSTANCE
#if defined(VERBOSE) && defined(DBG_UTIL)
#include <typeinfo>
#define BOOST_SPIRIT_DEBUG
#endif
#include <boost/spirit/include/classic_core.hpp>
#if (OSL_DEBUG_LEVEL > 0)
#include <iostream>
#endif
#include <functional>
#include <algorithm>
#include <stack>
#include <math.h> // fabs, sqrt, sin, cos, tan, atan, atan2
using namespace EnhancedCustomShape;
using namespace com::sun::star;
using namespace com::sun::star::drawing;
void EnhancedCustomShape::FillEquationParameter( const EnhancedCustomShapeParameter& rSource, const sal_Int32 nDestPara, EnhancedCustomShapeEquation& rDest )
{
sal_Int32 nValue = 0;
if ( rSource.Value.getValueTypeClass() == uno::TypeClass_DOUBLE )
{
double fValue;
if ( rSource.Value >>= fValue )
nValue = (sal_Int32)fValue;
}
else
rSource.Value >>= nValue;
switch( rSource.Type )
{
case com::sun::star::drawing::EnhancedCustomShapeParameterType::EQUATION :
{
if ( nValue & 0x40000000 )
{
nValue ^= 0x40000000;
rDest.nOperation |= 0x20000000 << nDestPara; // the bit is indicating that this value has to be adjusted later
}
nValue |= 0x400;
}
break;
case com::sun::star::drawing::EnhancedCustomShapeParameterType::ADJUSTMENT : nValue += DFF_Prop_adjustValue; break;
case com::sun::star::drawing::EnhancedCustomShapeParameterType::BOTTOM : nValue = DFF_Prop_geoBottom; break;
case com::sun::star::drawing::EnhancedCustomShapeParameterType::RIGHT : nValue = DFF_Prop_geoRight; break;
case com::sun::star::drawing::EnhancedCustomShapeParameterType::TOP : nValue = DFF_Prop_geoTop; break;
case com::sun::star::drawing::EnhancedCustomShapeParameterType::LEFT : nValue = DFF_Prop_geoLeft; break;
}
if ( rSource.Type != com::sun::star::drawing::EnhancedCustomShapeParameterType::NORMAL )
rDest.nOperation |= ( 0x2000 << nDestPara );
rDest.nPara[ nDestPara ] = nValue;
}
ExpressionNode::~ExpressionNode()
{}
namespace
{
//////////////////////
//////////////////////
// EXPRESSION NODES
//////////////////////
//////////////////////
class ConstantValueExpression : public ExpressionNode
{
double maValue;
public:
ConstantValueExpression( double rValue ) :
maValue( rValue )
{
}
virtual double operator()() const
{
return maValue;
}
virtual bool isConstant() const
{
return true;
}
virtual ExpressionFunct getType() const
{
return FUNC_CONST;
}
virtual EnhancedCustomShapeParameter fillNode( std::vector< EnhancedCustomShapeEquation >& rEquations, ExpressionNode* /* pOptionalArg */, sal_uInt32 /* nFlags */ )
{
EnhancedCustomShapeParameter aRet;
Fraction aFract( maValue );
if ( aFract.GetDenominator() == 1 )
{
aRet.Type = EnhancedCustomShapeParameterType::NORMAL;
aRet.Value <<= (sal_Int32)aFract.GetNumerator();
}
else
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation = 1;
aEquation.nPara[ 0 ] = 1;
aEquation.nPara[ 1 ] = (sal_Int16)aFract.GetNumerator();
aEquation.nPara[ 2 ] = (sal_Int16)aFract.GetDenominator();
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
return aRet;
}
};
class AdjustmentExpression : public ExpressionNode
{
sal_Int32 mnIndex;
const EnhancedCustomShape2d& mrCustoShape;
public:
AdjustmentExpression( const EnhancedCustomShape2d& rCustoShape, sal_Int32 nIndex )
: mnIndex ( nIndex )
, mrCustoShape( rCustoShape )
{
}
virtual double operator()() const
{
return mrCustoShape.GetAdjustValueAsDouble( mnIndex );
}
virtual bool isConstant() const
{
return false;
}
virtual ExpressionFunct getType() const
{
return ENUM_FUNC_ADJUSTMENT;
}
virtual EnhancedCustomShapeParameter fillNode( std::vector< EnhancedCustomShapeEquation >& /*rEquations*/, ExpressionNode* /*pOptionalArg*/, sal_uInt32 /*nFlags*/ )
{
EnhancedCustomShapeParameter aRet;
aRet.Type = EnhancedCustomShapeParameterType::ADJUSTMENT;
aRet.Value <<= mnIndex;
return aRet;
}
};
class EquationExpression : public ExpressionNode
{
sal_Int32 mnIndex;
const EnhancedCustomShape2d& mrCustoShape;
public:
EquationExpression( const EnhancedCustomShape2d& rCustoShape, sal_Int32 nIndex )
: mnIndex ( nIndex )
, mrCustoShape( rCustoShape )
{
}
virtual double operator()() const
{
return mrCustoShape.GetEquationValueAsDouble( mnIndex );
}
virtual bool isConstant() const
{
return false;
}
virtual ExpressionFunct getType() const
{
return ENUM_FUNC_EQUATION;
}
virtual EnhancedCustomShapeParameter fillNode( std::vector< EnhancedCustomShapeEquation >& /*rEquations*/, ExpressionNode* /*pOptionalArg*/, sal_uInt32 /*nFlags*/ )
{
EnhancedCustomShapeParameter aRet;
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= mnIndex | 0x40000000; // the bit is indicating that this equation needs to be adjusted later
return aRet;
}
};
class EnumValueExpression : public ExpressionNode
{
const ExpressionFunct meFunct;
const EnhancedCustomShape2d& mrCustoShape;
public:
EnumValueExpression( const EnhancedCustomShape2d& rCustoShape, const ExpressionFunct eFunct )
: meFunct ( eFunct )
, mrCustoShape ( rCustoShape )
{
}
static double getValue( const EnhancedCustomShape2d& rCustoShape, const ExpressionFunct eFunc )
{
EnhancedCustomShape2d::EnumFunc eF;
switch( eFunc )
{
case ENUM_FUNC_PI : eF = EnhancedCustomShape2d::ENUM_FUNC_PI; break;
case ENUM_FUNC_LEFT : eF = EnhancedCustomShape2d::ENUM_FUNC_LEFT; break;
case ENUM_FUNC_TOP : eF = EnhancedCustomShape2d::ENUM_FUNC_TOP; break;
case ENUM_FUNC_RIGHT : eF = EnhancedCustomShape2d::ENUM_FUNC_RIGHT; break;
case ENUM_FUNC_BOTTOM : eF = EnhancedCustomShape2d::ENUM_FUNC_BOTTOM; break;
case ENUM_FUNC_XSTRETCH : eF = EnhancedCustomShape2d::ENUM_FUNC_XSTRETCH; break;
case ENUM_FUNC_YSTRETCH : eF = EnhancedCustomShape2d::ENUM_FUNC_YSTRETCH; break;
case ENUM_FUNC_HASSTROKE : eF = EnhancedCustomShape2d::ENUM_FUNC_HASSTROKE; break;
case ENUM_FUNC_HASFILL : eF = EnhancedCustomShape2d::ENUM_FUNC_HASFILL; break;
case ENUM_FUNC_WIDTH : eF = EnhancedCustomShape2d::ENUM_FUNC_WIDTH; break;
case ENUM_FUNC_HEIGHT : eF = EnhancedCustomShape2d::ENUM_FUNC_HEIGHT; break;
case ENUM_FUNC_LOGWIDTH : eF = EnhancedCustomShape2d::ENUM_FUNC_LOGWIDTH; break;
case ENUM_FUNC_LOGHEIGHT : eF = EnhancedCustomShape2d::ENUM_FUNC_LOGHEIGHT; break;
default :
return 0.0;
}
return rCustoShape.GetEnumFunc( eF );
}
virtual double operator()() const
{
return getValue( mrCustoShape, meFunct );
}
virtual bool isConstant() const
{
return false;
}
virtual ExpressionFunct getType() const
{
return meFunct;
}
virtual EnhancedCustomShapeParameter fillNode( std::vector< EnhancedCustomShapeEquation >& rEquations, ExpressionNode* /*pOptionalArg*/, sal_uInt32 nFlags )
{
EnhancedCustomShapeParameter aRet;
sal_Int32 nDummy = 1;
aRet.Value <<= nDummy;
switch( meFunct )
{
case ENUM_FUNC_WIDTH : // TODO: do not use this as constant value
case ENUM_FUNC_HEIGHT :
case ENUM_FUNC_LOGWIDTH :
case ENUM_FUNC_LOGHEIGHT :
case ENUM_FUNC_PI :
{
ConstantValueExpression aConstantValue( getValue( mrCustoShape, meFunct ) );
aRet = aConstantValue.fillNode( rEquations, NULL, nFlags );
}
break;
case ENUM_FUNC_LEFT : aRet.Type = EnhancedCustomShapeParameterType::LEFT; break;
case ENUM_FUNC_TOP : aRet.Type = EnhancedCustomShapeParameterType::TOP; break;
case ENUM_FUNC_RIGHT : aRet.Type = EnhancedCustomShapeParameterType::RIGHT; break;
case ENUM_FUNC_BOTTOM : aRet.Type = EnhancedCustomShapeParameterType::BOTTOM; break;
// not implemented so far
case ENUM_FUNC_XSTRETCH :
case ENUM_FUNC_YSTRETCH :
case ENUM_FUNC_HASSTROKE :
case ENUM_FUNC_HASFILL : aRet.Type = EnhancedCustomShapeParameterType::NORMAL; break;
default:
break;
}
return aRet;
}
};
/** ExpressionNode implementation for unary
function over one ExpressionNode
*/
class UnaryFunctionExpression : public ExpressionNode
{
const ExpressionFunct meFunct;
ExpressionNodeSharedPtr mpArg;
public:
UnaryFunctionExpression( const ExpressionFunct eFunct, const ExpressionNodeSharedPtr& rArg ) :
meFunct( eFunct ),
mpArg( rArg )
{
}
static double getValue( const ExpressionFunct eFunct, const ExpressionNodeSharedPtr& rArg )
{
double fRet = 0;
switch( eFunct )
{
case UNARY_FUNC_ABS : fRet = fabs( (*rArg)() ); break;
case UNARY_FUNC_SQRT: fRet = sqrt( (*rArg)() ); break;
case UNARY_FUNC_SIN : fRet = sin( (*rArg)() ); break;
case UNARY_FUNC_COS : fRet = cos( (*rArg)() ); break;
case UNARY_FUNC_TAN : fRet = tan( (*rArg)() ); break;
case UNARY_FUNC_ATAN: fRet = atan( (*rArg)() ); break;
case UNARY_FUNC_NEG : fRet = ::std::negate<double>()( (*rArg)() ); break;
default:
break;
}
return fRet;
}
virtual double operator()() const
{
return getValue( meFunct, mpArg );
}
virtual bool isConstant() const
{
return mpArg->isConstant();
}
virtual ExpressionFunct getType() const
{
return meFunct;
}
virtual EnhancedCustomShapeParameter fillNode( std::vector< EnhancedCustomShapeEquation >& rEquations, ExpressionNode* pOptionalArg, sal_uInt32 nFlags )
{
EnhancedCustomShapeParameter aRet;
switch( meFunct )
{
case UNARY_FUNC_ABS :
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 3;
FillEquationParameter( mpArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
break;
case UNARY_FUNC_SQRT:
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 13;
FillEquationParameter( mpArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
break;
case UNARY_FUNC_SIN :
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 9;
if ( pOptionalArg )
FillEquationParameter( pOptionalArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
else
aEquation.nPara[ 0 ] = 1;
EnhancedCustomShapeParameter aSource( mpArg->fillNode( rEquations, NULL, nFlags | EXPRESSION_FLAG_SUMANGLE_MODE ) );
if ( aSource.Type == EnhancedCustomShapeParameterType::NORMAL )
{ // sumangle needed :-(
EnhancedCustomShapeEquation _aEquation;
_aEquation.nOperation |= 0xe; // sumangle
FillEquationParameter( aSource, 1, _aEquation );
aSource.Type = EnhancedCustomShapeParameterType::EQUATION;
aSource.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( _aEquation );
}
FillEquationParameter( aSource, 1, aEquation );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
break;
case UNARY_FUNC_COS :
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 10;
if ( pOptionalArg )
FillEquationParameter( pOptionalArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
else
aEquation.nPara[ 0 ] = 1;
EnhancedCustomShapeParameter aSource( mpArg->fillNode( rEquations, NULL, nFlags | EXPRESSION_FLAG_SUMANGLE_MODE ) );
if ( aSource.Type == EnhancedCustomShapeParameterType::NORMAL )
{ // sumangle needed :-(
EnhancedCustomShapeEquation aTmpEquation;
aTmpEquation.nOperation |= 0xe; // sumangle
FillEquationParameter( aSource, 1, aTmpEquation );
aSource.Type = EnhancedCustomShapeParameterType::EQUATION;
aSource.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aTmpEquation );
}
FillEquationParameter( aSource, 1, aEquation );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
break;
case UNARY_FUNC_TAN :
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 16;
if ( pOptionalArg )
FillEquationParameter( pOptionalArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
else
aEquation.nPara[ 0 ] = 1;
EnhancedCustomShapeParameter aSource( mpArg->fillNode( rEquations, NULL, nFlags | EXPRESSION_FLAG_SUMANGLE_MODE ) );
if ( aSource.Type == EnhancedCustomShapeParameterType::NORMAL )
{ // sumangle needed :-(
EnhancedCustomShapeEquation aTmpEquation;
aTmpEquation.nOperation |= 0xe; // sumangle
FillEquationParameter( aSource, 1, aTmpEquation );
aSource.Type = EnhancedCustomShapeParameterType::EQUATION;
aSource.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aTmpEquation );
}
FillEquationParameter( aSource, 1, aEquation );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
break;
case UNARY_FUNC_ATAN:
{
// TODO:
aRet.Type = EnhancedCustomShapeParameterType::NORMAL;
}
break;
case UNARY_FUNC_NEG:
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 1;
aEquation.nPara[ 1 ] = -1;
aEquation.nPara[ 2 ] = 1;
FillEquationParameter( mpArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
break;
default:
break;
}
return aRet;
}
};
/** ExpressionNode implementation for unary
function over two ExpressionNodes
*/
class BinaryFunctionExpression : public ExpressionNode
{
const ExpressionFunct meFunct;
ExpressionNodeSharedPtr mpFirstArg;
ExpressionNodeSharedPtr mpSecondArg;
public:
BinaryFunctionExpression( const ExpressionFunct eFunct, const ExpressionNodeSharedPtr& rFirstArg, const ExpressionNodeSharedPtr& rSecondArg ) :
meFunct( eFunct ),
mpFirstArg( rFirstArg ),
mpSecondArg( rSecondArg )
{
}
static double getValue( const ExpressionFunct eFunct, const ExpressionNodeSharedPtr& rFirstArg, const ExpressionNodeSharedPtr& rSecondArg )
{
double fRet = 0;
switch( eFunct )
{
case BINARY_FUNC_PLUS : fRet = (*rFirstArg)() + (*rSecondArg)(); break;
case BINARY_FUNC_MINUS: fRet = (*rFirstArg)() - (*rSecondArg)(); break;
case BINARY_FUNC_MUL : fRet = (*rFirstArg)() * (*rSecondArg)(); break;
case BINARY_FUNC_DIV : fRet = (*rFirstArg)() / (*rSecondArg)(); break;
case BINARY_FUNC_MIN : fRet = ::std::min( (*rFirstArg)(), (*rSecondArg)() ); break;
case BINARY_FUNC_MAX : fRet = ::std::max( (*rFirstArg)(), (*rSecondArg)() ); break;
case BINARY_FUNC_ATAN2: fRet = atan2( (*rFirstArg)(), (*rSecondArg)() ); break;
default:
break;
}
return fRet;
}
virtual double operator()() const
{
return getValue( meFunct, mpFirstArg, mpSecondArg );
}
virtual bool isConstant() const
{
return mpFirstArg->isConstant() && mpSecondArg->isConstant();
}
virtual ExpressionFunct getType() const
{
return meFunct;
}
virtual EnhancedCustomShapeParameter fillNode( std::vector< EnhancedCustomShapeEquation >& rEquations, ExpressionNode* /*pOptionalArg*/, sal_uInt32 nFlags )
{
EnhancedCustomShapeParameter aRet;
switch( meFunct )
{
case BINARY_FUNC_PLUS :
{
if ( nFlags & EXPRESSION_FLAG_SUMANGLE_MODE )
{
if ( mpFirstArg->getType() == ENUM_FUNC_ADJUSTMENT )
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 0xe; // sumangle
FillEquationParameter( mpFirstArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
FillEquationParameter( mpSecondArg->fillNode( rEquations, NULL, nFlags ), 1, aEquation );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
else if ( mpSecondArg->getType() == ENUM_FUNC_ADJUSTMENT )
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 0xe; // sumangle
FillEquationParameter( mpSecondArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
FillEquationParameter( mpFirstArg->fillNode( rEquations, NULL, nFlags ), 1, aEquation );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
else
{
EnhancedCustomShapeEquation aSumangle1;
aSumangle1.nOperation |= 0xe; // sumangle
FillEquationParameter( mpFirstArg->fillNode( rEquations, NULL, nFlags &~EXPRESSION_FLAG_SUMANGLE_MODE ), 1, aSumangle1 );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aSumangle1 );
EnhancedCustomShapeEquation aSumangle2;
aSumangle2.nOperation |= 0xe; // sumangle
FillEquationParameter( mpSecondArg->fillNode( rEquations, NULL, nFlags &~EXPRESSION_FLAG_SUMANGLE_MODE ), 1, aSumangle2 );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aSumangle2 );
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 0;
aEquation.nPara[ 0 ] = ( rEquations.size() - 2 ) | 0x400;
aEquation.nPara[ 1 ] = ( rEquations.size() - 1 ) | 0x400;
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
}
else
{
sal_Bool bFirstIsEmpty = mpFirstArg->isConstant() && ( (*mpFirstArg)() == 0 );
sal_Bool bSecondIsEmpty = mpSecondArg->isConstant() && ( (*mpSecondArg)() == 0 );
if ( bFirstIsEmpty )
aRet = mpSecondArg->fillNode( rEquations, NULL, nFlags );
else if ( bSecondIsEmpty )
aRet = mpFirstArg->fillNode( rEquations, NULL, nFlags );
else
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 0;
FillEquationParameter( mpFirstArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
FillEquationParameter( mpSecondArg->fillNode( rEquations, NULL, nFlags ), 1, aEquation );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
}
}
break;
case BINARY_FUNC_MINUS:
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 0;
FillEquationParameter( mpFirstArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
FillEquationParameter( mpSecondArg->fillNode( rEquations, NULL, nFlags ), 2, aEquation );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
break;
case BINARY_FUNC_MUL :
{
// in the dest. format the cos function is using integer as result :-(
// so we can't use the generic algorithm
if ( ( mpFirstArg->getType() == UNARY_FUNC_SIN ) || ( mpFirstArg->getType() == UNARY_FUNC_COS ) || ( mpFirstArg->getType() == UNARY_FUNC_TAN ) )
aRet = mpFirstArg->fillNode( rEquations, mpSecondArg.get(), nFlags );
else if ( ( mpSecondArg->getType() == UNARY_FUNC_SIN ) || ( mpSecondArg->getType() == UNARY_FUNC_COS ) || ( mpSecondArg->getType() == UNARY_FUNC_TAN ) )
aRet = mpSecondArg->fillNode( rEquations, mpFirstArg.get(), nFlags );
else
{
if ( mpFirstArg->isConstant() && (*mpFirstArg)() == 1 )
aRet = mpSecondArg->fillNode( rEquations, NULL, nFlags );
else if ( mpSecondArg->isConstant() && (*mpSecondArg)() == 1 )
aRet = mpFirstArg->fillNode( rEquations, NULL, nFlags );
else if ( ( mpFirstArg->getType() == BINARY_FUNC_DIV ) // don't care of (pi/180)
&& ( ((BinaryFunctionExpression*)((BinaryFunctionExpression*)mpFirstArg.get())->mpFirstArg.get())->getType() == ENUM_FUNC_PI )
&& ( ((BinaryFunctionExpression*)((BinaryFunctionExpression*)mpFirstArg.get())->mpSecondArg.get())->getType() == FUNC_CONST ) )
{
aRet = mpSecondArg->fillNode( rEquations, NULL, nFlags );
}
else if ( ( mpSecondArg->getType() == BINARY_FUNC_DIV ) // don't care of (pi/180)
&& ( ((BinaryFunctionExpression*)((BinaryFunctionExpression*)mpSecondArg.get())->mpFirstArg.get())->getType() == ENUM_FUNC_PI )
&& ( ((BinaryFunctionExpression*)((BinaryFunctionExpression*)mpSecondArg.get())->mpSecondArg.get())->getType() == FUNC_CONST ) )
{
aRet = mpFirstArg->fillNode( rEquations, NULL, nFlags );
}
else
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 1;
FillEquationParameter( mpFirstArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
FillEquationParameter( mpSecondArg->fillNode( rEquations, NULL, nFlags ), 1, aEquation );
aEquation.nPara[ 2 ] = 1;
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
}
}
break;
case BINARY_FUNC_DIV :
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 1;
FillEquationParameter( mpFirstArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
aEquation.nPara[ 1 ] = 1;
FillEquationParameter( mpSecondArg->fillNode( rEquations, NULL, nFlags ), 2, aEquation );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
break;
case BINARY_FUNC_MIN :
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 4;
FillEquationParameter( mpFirstArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
FillEquationParameter( mpSecondArg->fillNode( rEquations, NULL, nFlags ), 1, aEquation );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
break;
case BINARY_FUNC_MAX :
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 5;
FillEquationParameter( mpFirstArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
FillEquationParameter( mpSecondArg->fillNode( rEquations, NULL, nFlags ), 1, aEquation );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
break;
case BINARY_FUNC_ATAN2:
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 8;
FillEquationParameter( mpSecondArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
FillEquationParameter( mpFirstArg->fillNode( rEquations, NULL, nFlags ), 1, aEquation );
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
rEquations.push_back( aEquation );
}
break;
default:
break;
}
return aRet;
}
};
class IfExpression : public ExpressionNode
{
ExpressionNodeSharedPtr mpFirstArg;
ExpressionNodeSharedPtr mpSecondArg;
ExpressionNodeSharedPtr mpThirdArg;
public:
IfExpression( const ExpressionNodeSharedPtr& rFirstArg,
const ExpressionNodeSharedPtr& rSecondArg,
const ExpressionNodeSharedPtr& rThirdArg ) :
mpFirstArg( rFirstArg ),
mpSecondArg( rSecondArg ),
mpThirdArg( rThirdArg )
{
}
virtual bool isConstant() const
{
return
mpFirstArg->isConstant() &&
mpSecondArg->isConstant() &&
mpThirdArg->isConstant();
}
virtual double operator()() const
{
return (*mpFirstArg)() > 0 ? (*mpSecondArg)() : (*mpThirdArg)();
}
virtual ExpressionFunct getType() const
{
return TERNARY_FUNC_IF;
}
virtual EnhancedCustomShapeParameter fillNode( std::vector< EnhancedCustomShapeEquation >& rEquations, ExpressionNode* /*pOptionalArg*/, sal_uInt32 nFlags )
{
EnhancedCustomShapeParameter aRet;
aRet.Type = EnhancedCustomShapeParameterType::EQUATION;
aRet.Value <<= (sal_Int32)rEquations.size();
{
EnhancedCustomShapeEquation aEquation;
aEquation.nOperation |= 6;
FillEquationParameter( mpFirstArg->fillNode( rEquations, NULL, nFlags ), 0, aEquation );
FillEquationParameter( mpSecondArg->fillNode( rEquations, NULL, nFlags ), 1, aEquation );
FillEquationParameter( mpThirdArg->fillNode( rEquations, NULL, nFlags ), 2, aEquation );
rEquations.push_back( aEquation );
}
return aRet;
}
};
////////////////////////
////////////////////////
// FUNCTION PARSER
////////////////////////
////////////////////////
typedef const sal_Char* StringIteratorT;
struct ParserContext
{
typedef ::std::stack< ExpressionNodeSharedPtr > OperandStack;
// stores a stack of not-yet-evaluated operands. This is used
// by the operators (i.e. '+', '*', 'sin' etc.) to pop their
// arguments from. If all arguments to an operator are constant,
// the operator pushes a precalculated result on the stack, and
// a composite ExpressionNode otherwise.
OperandStack maOperandStack;
const EnhancedCustomShape2d* mpCustoShape;
};
typedef ::boost::shared_ptr< ParserContext > ParserContextSharedPtr;
/** Generate apriori constant value
*/
class ConstantFunctor
{
const double mnValue;
ParserContextSharedPtr mpContext;
public:
ConstantFunctor( double rValue, const ParserContextSharedPtr& rContext ) :
mnValue( rValue ),
mpContext( rContext )
{
}
void operator()( StringIteratorT /*rFirst*/, StringIteratorT /*rSecond*/ ) const
{
mpContext->maOperandStack.push( ExpressionNodeSharedPtr( new ConstantValueExpression( mnValue ) ) );
}
};
/** Generate parse-dependent-but-then-constant value
*/
class DoubleConstantFunctor
{
ParserContextSharedPtr mpContext;
public:
DoubleConstantFunctor( const ParserContextSharedPtr& rContext ) :
mpContext( rContext )
{
}
void operator()( double n ) const
{
mpContext->maOperandStack.push( ExpressionNodeSharedPtr( new ConstantValueExpression( n ) ) );
}
};
class EnumFunctor
{
const ExpressionFunct meFunct;
double mnValue;
ParserContextSharedPtr mpContext;
public:
EnumFunctor( const ExpressionFunct eFunct, const ParserContextSharedPtr& rContext )
: meFunct( eFunct )
, mnValue( 0 )
, mpContext( rContext )
{
}
void operator()( StringIteratorT rFirst, StringIteratorT rSecond ) const
{
/*double nVal = mnValue;*/
switch( meFunct )
{
case ENUM_FUNC_ADJUSTMENT :
{
rtl::OUString aVal( rFirst + 1, rSecond - rFirst, RTL_TEXTENCODING_UTF8 );
mpContext->maOperandStack.push( ExpressionNodeSharedPtr( new AdjustmentExpression( *mpContext->mpCustoShape, aVal.toInt32() ) ) );
}
break;
case ENUM_FUNC_EQUATION :
{
rtl::OUString aVal( rFirst + 1, rSecond - rFirst, RTL_TEXTENCODING_UTF8 );
mpContext->maOperandStack.push( ExpressionNodeSharedPtr( new EquationExpression( *mpContext->mpCustoShape, aVal.toInt32() ) ) );
}
break;
default:
mpContext->maOperandStack.push( ExpressionNodeSharedPtr( new EnumValueExpression( *mpContext->mpCustoShape, meFunct ) ) );
}
}
};
class UnaryFunctionFunctor
{
const ExpressionFunct meFunct;
ParserContextSharedPtr mpContext;
public :
UnaryFunctionFunctor( const ExpressionFunct eFunct, const ParserContextSharedPtr& rContext ) :
meFunct( eFunct ),
mpContext( rContext )
{
}
void operator()( StringIteratorT, StringIteratorT ) const
{
ParserContext::OperandStack& rNodeStack( mpContext->maOperandStack );
if( rNodeStack.size() < 1 )
throw ParseError( "Not enough arguments for unary operator" );
// retrieve arguments
ExpressionNodeSharedPtr pArg( rNodeStack.top() );
rNodeStack.pop();
if( pArg->isConstant() ) // check for constness
rNodeStack.push( ExpressionNodeSharedPtr( new ConstantValueExpression( UnaryFunctionExpression::getValue( meFunct, pArg ) ) ) );
else // push complex node, that calcs the value on demand
rNodeStack.push( ExpressionNodeSharedPtr( new UnaryFunctionExpression( meFunct, pArg ) ) );
}
};
/** Implements a binary function over two ExpressionNodes
@tpl Generator
Generator functor, to generate an ExpressionNode of
appropriate type
*/
class BinaryFunctionFunctor
{
const ExpressionFunct meFunct;
ParserContextSharedPtr mpContext;
public:
BinaryFunctionFunctor( const ExpressionFunct eFunct, const ParserContextSharedPtr& rContext ) :
meFunct( eFunct ),
mpContext( rContext )
{
}
void operator()( StringIteratorT, StringIteratorT ) const
{
ParserContext::OperandStack& rNodeStack( mpContext->maOperandStack );
if( rNodeStack.size() < 2 )
throw ParseError( "Not enough arguments for binary operator" );
// retrieve arguments
ExpressionNodeSharedPtr pSecondArg( rNodeStack.top() );
rNodeStack.pop();
ExpressionNodeSharedPtr pFirstArg( rNodeStack.top() );
rNodeStack.pop();
// create combined ExpressionNode
ExpressionNodeSharedPtr pNode = ExpressionNodeSharedPtr( new BinaryFunctionExpression( meFunct, pFirstArg, pSecondArg ) );
// check for constness
if( pFirstArg->isConstant() && pSecondArg->isConstant() ) // call the operator() at pNode, store result in constant value ExpressionNode.
rNodeStack.push( ExpressionNodeSharedPtr( new ConstantValueExpression( (*pNode)() ) ) );
else // push complex node, that calcs the value on demand
rNodeStack.push( pNode );
}
};
class IfFunctor
{
ParserContextSharedPtr mpContext;
public :
IfFunctor( const ParserContextSharedPtr& rContext ) :
mpContext( rContext )
{
}
void operator()( StringIteratorT, StringIteratorT ) const
{
ParserContext::OperandStack& rNodeStack( mpContext->maOperandStack );
if( rNodeStack.size() < 3 )
throw ParseError( "Not enough arguments for ternary operator" );
// retrieve arguments
ExpressionNodeSharedPtr pThirdArg( rNodeStack.top() );
rNodeStack.pop();
ExpressionNodeSharedPtr pSecondArg( rNodeStack.top() );
rNodeStack.pop();
ExpressionNodeSharedPtr pFirstArg( rNodeStack.top() );
rNodeStack.pop();
// create combined ExpressionNode
ExpressionNodeSharedPtr pNode( new IfExpression( pFirstArg, pSecondArg, pThirdArg ) );
// check for constness
if( pFirstArg->isConstant() && pSecondArg->isConstant() && pThirdArg->isConstant() )
rNodeStack.push( ExpressionNodeSharedPtr( new ConstantValueExpression( (*pNode)() ) ) ); // call the operator() at pNode, store result in constant value ExpressionNode.
else
rNodeStack.push( pNode ); // push complex node, that calcs the value on demand
}
};
// Workaround for MSVC compiler anomaly (stack trashing)
//
// The default ureal_parser_policies implementation of parse_exp
// triggers a really weird error in MSVC7 (Version 13.00.9466), in
// that the real_parser_impl::parse_main() call of parse_exp()
// overwrites the frame pointer _on the stack_ (EBP of the calling
// function gets overwritten while lying on the stack).
//
// For the time being, our parser thus can only read the 1.0E10
// notation, not the 1.0e10 one.
//
// TODO(F1): Also handle the 1.0e10 case here.
template< typename T > struct custom_real_parser_policies : public ::boost::spirit::ureal_parser_policies<T>
{
template< typename ScannerT >
static typename ::boost::spirit::parser_result< ::boost::spirit::chlit<>, ScannerT >::type
parse_exp(ScannerT& scan)
{
// as_lower_d somehow breaks MSVC7
return ::boost::spirit::ch_p('E').parse(scan);
}
};
/* This class implements the following grammar (more or
less literally written down below, only slightly
obfuscated by the parser actions):
identifier = '$'|'pi'|'e'|'X'|'Y'|'Width'|'Height'
function = 'abs'|'sqrt'|'sin'|'cos'|'tan'|'atan'|'acos'|'asin'|'exp'|'log'
basic_expression =
number |
identifier |
function '(' additive_expression ')' |
'(' additive_expression ')'
unary_expression =
'-' basic_expression |
basic_expression
multiplicative_expression =
unary_expression ( ( '*' unary_expression )* |
( '/' unary_expression )* )
additive_expression =
multiplicative_expression ( ( '+' multiplicative_expression )* |
( '-' multiplicative_expression )* )
*/
class ExpressionGrammar : public ::boost::spirit::grammar< ExpressionGrammar >
{
public:
/** Create an arithmetic expression grammar
@param rParserContext
Contains context info for the parser
*/
ExpressionGrammar( const ParserContextSharedPtr& rParserContext ) :
mpParserContext( rParserContext )
{
}
template< typename ScannerT > class definition
{
public:
// grammar definition
definition( const ExpressionGrammar& self )
{
using ::boost::spirit::str_p;
using ::boost::spirit::range_p;
using ::boost::spirit::lexeme_d;
using ::boost::spirit::real_parser;
using ::boost::spirit::chseq_p;
identifier =
str_p( "pi" )[ EnumFunctor(ENUM_FUNC_PI, self.getContext() ) ]
| str_p( "left" )[ EnumFunctor(ENUM_FUNC_LEFT, self.getContext() ) ]
| str_p( "top" )[ EnumFunctor(ENUM_FUNC_TOP, self.getContext() ) ]
| str_p( "right" )[ EnumFunctor(ENUM_FUNC_RIGHT, self.getContext() ) ]
| str_p( "bottom" )[ EnumFunctor(ENUM_FUNC_BOTTOM, self.getContext() ) ]
| str_p( "xstretch" )[ EnumFunctor(ENUM_FUNC_XSTRETCH, self.getContext() ) ]
| str_p( "ystretch" )[ EnumFunctor(ENUM_FUNC_YSTRETCH, self.getContext() ) ]
| str_p( "hasstroke" )[ EnumFunctor(ENUM_FUNC_HASSTROKE, self.getContext() ) ]
| str_p( "hasfill" )[ EnumFunctor(ENUM_FUNC_HASFILL, self.getContext() ) ]
| str_p( "width" )[ EnumFunctor(ENUM_FUNC_WIDTH, self.getContext() ) ]
| str_p( "height" )[ EnumFunctor(ENUM_FUNC_HEIGHT, self.getContext() ) ]
| str_p( "logwidth" )[ EnumFunctor(ENUM_FUNC_LOGWIDTH, self.getContext() ) ]
| str_p( "logheight" )[ EnumFunctor(ENUM_FUNC_LOGHEIGHT, self.getContext() ) ]
;
unaryFunction =
(str_p( "abs" ) >> '(' >> additiveExpression >> ')' )[ UnaryFunctionFunctor( UNARY_FUNC_ABS, self.getContext()) ]
| (str_p( "sqrt" ) >> '(' >> additiveExpression >> ')' )[ UnaryFunctionFunctor( UNARY_FUNC_SQRT, self.getContext()) ]
| (str_p( "sin" ) >> '(' >> additiveExpression >> ')' )[ UnaryFunctionFunctor( UNARY_FUNC_SIN, self.getContext()) ]
| (str_p( "cos" ) >> '(' >> additiveExpression >> ')' )[ UnaryFunctionFunctor( UNARY_FUNC_COS, self.getContext()) ]
| (str_p( "tan" ) >> '(' >> additiveExpression >> ')' )[ UnaryFunctionFunctor( UNARY_FUNC_TAN, self.getContext()) ]
| (str_p( "atan" ) >> '(' >> additiveExpression >> ')' )[ UnaryFunctionFunctor( UNARY_FUNC_ATAN, self.getContext()) ]
;
binaryFunction =
(str_p( "min" ) >> '(' >> additiveExpression >> ',' >> additiveExpression >> ')' )[ BinaryFunctionFunctor( BINARY_FUNC_MIN, self.getContext()) ]
| (str_p( "max" ) >> '(' >> additiveExpression >> ',' >> additiveExpression >> ')' )[ BinaryFunctionFunctor( BINARY_FUNC_MAX, self.getContext()) ]
| (str_p( "atan2") >> '(' >> additiveExpression >> ',' >> additiveExpression >> ')' )[ BinaryFunctionFunctor( BINARY_FUNC_ATAN2,self.getContext()) ]
;
ternaryFunction =
(str_p( "if" ) >> '(' >> additiveExpression >> ',' >> additiveExpression >> ',' >> additiveExpression >> ')' )[ IfFunctor( self.getContext() ) ]
;
funcRef_decl =
lexeme_d[ +( range_p('a','z') | range_p('A','Z') | range_p('0','9') ) ];
functionReference =
(str_p( "?" ) >> funcRef_decl )[ EnumFunctor( ENUM_FUNC_EQUATION, self.getContext() ) ];
modRef_decl =
lexeme_d[ +( range_p('0','9') ) ];
modifierReference =
(str_p( "$" ) >> modRef_decl )[ EnumFunctor( ENUM_FUNC_ADJUSTMENT, self.getContext() ) ];
basicExpression =
real_parser<double, custom_real_parser_policies<double> >()[ DoubleConstantFunctor(self.getContext()) ]
| identifier
| functionReference
| modifierReference
| unaryFunction
| binaryFunction
| ternaryFunction
| '(' >> additiveExpression >> ')'
;
unaryExpression =
('-' >> basicExpression)[ UnaryFunctionFunctor( UNARY_FUNC_NEG, self.getContext()) ]
| basicExpression
;
multiplicativeExpression =
unaryExpression
>> *( ('*' >> unaryExpression)[ BinaryFunctionFunctor( BINARY_FUNC_MUL, self.getContext()) ]
| ('/' >> unaryExpression)[ BinaryFunctionFunctor( BINARY_FUNC_DIV, self.getContext()) ]
)
;
additiveExpression =
multiplicativeExpression
>> *( ('+' >> multiplicativeExpression)[ BinaryFunctionFunctor( BINARY_FUNC_PLUS, self.getContext()) ]
| ('-' >> multiplicativeExpression)[ BinaryFunctionFunctor( BINARY_FUNC_MINUS, self.getContext()) ]
)
;
BOOST_SPIRIT_DEBUG_RULE(additiveExpression);
BOOST_SPIRIT_DEBUG_RULE(multiplicativeExpression);
BOOST_SPIRIT_DEBUG_RULE(unaryExpression);
BOOST_SPIRIT_DEBUG_RULE(basicExpression);
BOOST_SPIRIT_DEBUG_RULE(unaryFunction);
BOOST_SPIRIT_DEBUG_RULE(binaryFunction);
BOOST_SPIRIT_DEBUG_RULE(ternaryFunction);
BOOST_SPIRIT_DEBUG_RULE(identifier);
}
const ::boost::spirit::rule< ScannerT >& start() const
{
return additiveExpression;
}
private:
// the constituents of the Spirit arithmetic expression grammar.
// For the sake of readability, without 'ma' prefix.
::boost::spirit::rule< ScannerT > additiveExpression;
::boost::spirit::rule< ScannerT > multiplicativeExpression;
::boost::spirit::rule< ScannerT > unaryExpression;
::boost::spirit::rule< ScannerT > basicExpression;
::boost::spirit::rule< ScannerT > unaryFunction;
::boost::spirit::rule< ScannerT > binaryFunction;
::boost::spirit::rule< ScannerT > ternaryFunction;
::boost::spirit::rule< ScannerT > funcRef_decl;
::boost::spirit::rule< ScannerT > functionReference;
::boost::spirit::rule< ScannerT > modRef_decl;
::boost::spirit::rule< ScannerT > modifierReference;
::boost::spirit::rule< ScannerT > identifier;
};
const ParserContextSharedPtr& getContext() const
{
return mpParserContext;
}
private:
ParserContextSharedPtr mpParserContext; // might get modified during parsing
};
#ifdef BOOST_SPIRIT_SINGLE_GRAMMAR_INSTANCE
const ParserContextSharedPtr& getParserContext()
{
static ParserContextSharedPtr lcl_parserContext( new ParserContext() );
// clear node stack (since we reuse the static object, that's
// the whole point here)
while( !lcl_parserContext->maOperandStack.empty() )
lcl_parserContext->maOperandStack.pop();
return lcl_parserContext;
}
#endif
}
namespace EnhancedCustomShape {
ExpressionNodeSharedPtr FunctionParser::parseFunction( const ::rtl::OUString& rFunction, const EnhancedCustomShape2d& rCustoShape )
{
// TODO(Q1): Check if a combination of the RTL_UNICODETOTEXT_FLAGS_*
// gives better conversion robustness here (we might want to map space
// etc. to ASCII space here)
const ::rtl::OString& rAsciiFunction(
rtl::OUStringToOString( rFunction, RTL_TEXTENCODING_ASCII_US ) );
StringIteratorT aStart( rAsciiFunction.getStr() );
StringIteratorT aEnd( rAsciiFunction.getStr()+rAsciiFunction.getLength() );
ParserContextSharedPtr pContext;
#ifdef BOOST_SPIRIT_SINGLE_GRAMMAR_INSTANCE
// static parser context, because the actual
// Spirit parser is also a static object
pContext = getParserContext();
#else
pContext.reset( new ParserContext() );
#endif
pContext->mpCustoShape = &rCustoShape;
ExpressionGrammar aExpressionGrammer( pContext );
const ::boost::spirit::parse_info<StringIteratorT> aParseInfo(
::boost::spirit::parse( aStart,
aEnd,
aExpressionGrammer >> ::boost::spirit::end_p,
::boost::spirit::space_p ) );
OSL_DEBUG_ONLY(::std::cout.flush()); // needed to keep stdout and cout in sync
// input fully congested by the parser?
if( !aParseInfo.full )
throw ParseError( "EnhancedCustomShapeFunctionParser::parseFunction(): string not fully parseable" );
// parser's state stack now must contain exactly _one_ ExpressionNode,
// which represents our formula.
if( pContext->maOperandStack.size() != 1 )
throw ParseError( "EnhancedCustomShapeFunctionParser::parseFunction(): incomplete or empty expression" );
return pContext->maOperandStack.top();
}
}