blob: 6c9f7c5ac8ae466068c59328b70ef06d21b3e7c5 [file] [log] [blame]
/**************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_sdext.hxx"
#include <pdfparse.hxx>
#include <rtl/strbuf.hxx>
#include <rtl/ustring.hxx>
#include <rtl/ustrbuf.hxx>
#include <rtl/alloc.h>
#include <rtl/digest.h>
#include <rtl/cipher.h>
#include <rtl/memory.h>
#ifdef SYSTEM_ZLIB
#include "zlib.h"
#else
#include <zlib/zlib.h>
#endif
#include <math.h>
#include <map>
#include <stdio.h>
using namespace rtl;
namespace pdfparse
{
struct EmitImplData
{
// xref table: maps object number to a pair of (generation, buffer offset)
typedef std::map< unsigned int, std::pair< unsigned int, unsigned int > > XRefTable;
XRefTable m_aXRefTable;
// container of all indirect objects (usually a PDFFile*)
const PDFContainer* m_pObjectContainer;
unsigned int m_nDecryptObject;
unsigned int m_nDecryptGeneration;
// returns true if the xref table was updated
bool insertXref( unsigned int nObject, unsigned int nGeneration, unsigned int nOffset )
{
XRefTable::iterator it = m_aXRefTable.find( nObject );
if( it == m_aXRefTable.end() )
{
// new entry
m_aXRefTable[ nObject ] = std::pair<unsigned int, unsigned int>(nGeneration,nOffset);
return true;
}
// update old entry, if generation number is higher
if( it->second.first < nGeneration )
{
it->second = std::pair<unsigned int, unsigned int>(nGeneration,nOffset);
return true;
}
return false;
}
EmitImplData( const PDFContainer* pTopContainer ) :
m_pObjectContainer( pTopContainer ),
m_nDecryptObject( 0 ),
m_nDecryptGeneration( 0 )
{}
~EmitImplData() {}
bool decrypt( const sal_uInt8* pInBuffer, sal_uInt32 nLen, sal_uInt8* pOutBuffer,
unsigned int nObject, unsigned int nGeneration ) const
{
const PDFFile* pFile = dynamic_cast<const PDFFile*>(m_pObjectContainer);
return pFile ? pFile->decrypt( pInBuffer, nLen, pOutBuffer, nObject, nGeneration ) : false;
}
void setDecryptObject( unsigned int nObject, unsigned int nGeneration )
{
m_nDecryptObject = nObject;
m_nDecryptGeneration = nGeneration;
}
};
}
using namespace pdfparse;
EmitContext::EmitContext( const PDFContainer* pTop ) :
m_bDeflate( false ),
m_bDecrypt( false ),
m_pImplData( NULL )
{
if( pTop )
m_pImplData = new EmitImplData( pTop );
}
EmitContext::~EmitContext()
{
delete m_pImplData;
}
PDFEntry::~PDFEntry()
{
}
EmitImplData* PDFEntry::getEmitData( EmitContext& rContext ) const
{
return rContext.m_pImplData;
}
void PDFEntry::setEmitData( EmitContext& rContext, EmitImplData* pNewEmitData ) const
{
if( rContext.m_pImplData && rContext.m_pImplData != pNewEmitData )
delete rContext.m_pImplData;
rContext.m_pImplData = pNewEmitData;
}
PDFValue::~PDFValue()
{
}
PDFComment::~PDFComment()
{
}
bool PDFComment::emit( EmitContext& rWriteContext ) const
{
return rWriteContext.write( m_aComment.getStr(), m_aComment.getLength() );
}
PDFEntry* PDFComment::clone() const
{
return new PDFComment( m_aComment );
}
PDFName::~PDFName()
{
}
bool PDFName::emit( EmitContext& rWriteContext ) const
{
if( ! rWriteContext.write( " /", 2 ) )
return false;
return rWriteContext.write( m_aName.getStr(), m_aName.getLength() );
}
PDFEntry* PDFName::clone() const
{
return new PDFName( m_aName );
}
OUString PDFName::getFilteredName() const
{
OStringBuffer aFilter( m_aName.getLength() );
const sal_Char* pStr = m_aName.getStr();
unsigned int nLen = m_aName.getLength();
for( unsigned int i = 0; i < nLen; i++ )
{
if( pStr[i] == '#' && i < nLen - 3 )
{
sal_Char rResult = 0;
i++;
if( pStr[i] >= '0' && pStr[i] <= '9' )
rResult = sal_Char( pStr[i]-'0' ) << 4;
else if( pStr[i] >= 'a' && pStr[i] <= 'f' )
rResult = sal_Char( pStr[i]-'a' + 10 ) << 4;
else if( pStr[i] >= 'A' && pStr[i] <= 'F' )
rResult = sal_Char( pStr[i]-'A' + 10 ) << 4;
i++;
if( pStr[i] >= '0' && pStr[i] <= '9' )
rResult |= sal_Char( pStr[i]-'0' );
else if( pStr[i] >= 'a' && pStr[i] <= 'f' )
rResult |= sal_Char( pStr[i]-'a' + 10 );
else if( pStr[i] >= 'A' && pStr[i] <= 'F' )
rResult |= sal_Char( pStr[i]-'A' + 10 );
aFilter.append( rResult );
}
else
aFilter.append( pStr[i] );
}
return OStringToOUString( aFilter.makeStringAndClear(), RTL_TEXTENCODING_UTF8 );
}
PDFString::~PDFString()
{
}
bool PDFString::emit( EmitContext& rWriteContext ) const
{
if( ! rWriteContext.write( " ", 1 ) )
return false;
EmitImplData* pEData = getEmitData( rWriteContext );
if( rWriteContext.m_bDecrypt && pEData && pEData->m_nDecryptObject )
{
OString aFiltered( getFilteredString() );
// decrypt inplace (evil since OString is supposed to be const
// however in this case we know that getFilteredString returned a singular string instance
pEData->decrypt( (sal_uInt8*)aFiltered.getStr(), aFiltered.getLength(),
(sal_uInt8*)aFiltered.getStr(),
pEData->m_nDecryptObject, pEData->m_nDecryptGeneration );
// check for string or hex string
const sal_Char* pStr = aFiltered.getStr();
if( aFiltered.getLength() > 1 &&
( (pStr[0] == sal_Char(0xff) && pStr[1] == sal_Char(0xfe)) ||
(pStr[0] == sal_Char(0xfe) && pStr[1] == sal_Char(0xff)) ) )
{
static const char pHexTab[16] = { '0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'A', 'B', 'C', 'D', 'E', 'F' };
if( ! rWriteContext.write( "<", 1 ) )
return false;
for( sal_Int32 i = 0; i < aFiltered.getLength(); i++ )
{
if( ! rWriteContext.write( pHexTab + ((sal_uInt32(pStr[i]) >> 4) & 0x0f), 1 ) )
return false;
if( ! rWriteContext.write( pHexTab + (sal_uInt32(pStr[i]) & 0x0f), 1 ) )
return false;
}
if( ! rWriteContext.write( ">", 1 ) )
return false;
}
else
{
if( ! rWriteContext.write( "(", 1 ) )
return false;
if( ! rWriteContext.write( aFiltered.getStr(), aFiltered.getLength() ) )
return false;
if( ! rWriteContext.write( ")", 1 ) )
return false;
}
return true;
}
return rWriteContext.write( m_aString.getStr(), m_aString.getLength() );
}
PDFEntry* PDFString::clone() const
{
return new PDFString( m_aString );
}
OString PDFString::getFilteredString() const
{
int nLen = m_aString.getLength();
OStringBuffer aBuf( nLen );
const sal_Char* pStr = m_aString.getStr();
if( *pStr == '(' )
{
const sal_Char* pRun = pStr+1;
while( pRun - pStr < nLen-1 )
{
if( *pRun == '\\' )
{
pRun++;
if( pRun - pStr < nLen )
{
sal_Char aEsc = 0;
if( *pRun == 'n' )
aEsc = '\n';
else if( *pRun == 'r' )
aEsc = '\r';
else if( *pRun == 't' )
aEsc = '\t';
else if( *pRun == 'b' )
aEsc = '\b';
else if( *pRun == 'f' )
aEsc = '\f';
else if( *pRun == '(' )
aEsc = '(';
else if( *pRun == ')' )
aEsc = ')';
else if( *pRun == '\\' )
aEsc = '\\';
else if( *pRun == '\n' )
{
pRun++;
continue;
}
else if( *pRun == '\r' )
{
pRun++;
if( *pRun == '\n' )
pRun++;
continue;
}
else
{
int i = 0;
while( i++ < 3 && *pRun >= '0' && *pRun <= '7' )
aEsc = 8*aEsc + (*pRun++ - '0');
// move pointer back to last character of octal sequence
pRun--;
}
aBuf.append( aEsc );
}
}
else
aBuf.append( *pRun );
// move pointer to next character
pRun++;
}
}
else if( *pStr == '<' )
{
const sal_Char* pRun = pStr+1;
while( *pRun != '>' && pRun - pStr < nLen )
{
sal_Char rResult = 0;
if( *pRun >= '0' && *pRun <= '9' )
rResult = sal_Char( *pRun-'0' ) << 4;
else if( *pRun >= 'a' && *pRun <= 'f' )
rResult = sal_Char( *pRun-'a' + 10 ) << 4;
else if( *pRun >= 'A' && *pRun <= 'F' )
rResult = sal_Char( *pRun-'A' + 10 ) << 4;
pRun++;
if( *pRun != '>' && pRun - pStr < nLen )
{
if( *pRun >= '0' && *pRun <= '9' )
rResult |= sal_Char( *pRun-'0' );
else if( *pRun >= 'a' && *pRun <= 'f' )
rResult |= sal_Char( *pRun-'a' + 10 );
else if( *pRun >= 'A' && *pRun <= 'F' )
rResult |= sal_Char( *pRun-'A' + 10 );
}
pRun++;
aBuf.append( rResult );
}
}
return aBuf.makeStringAndClear();
}
PDFNumber::~PDFNumber()
{
}
bool PDFNumber::emit( EmitContext& rWriteContext ) const
{
rtl::OStringBuffer aBuf( 32 );
aBuf.append( ' ' );
double fValue = m_fValue;
bool bNeg = false;
int nPrecision = 5;
if( fValue < 0.0 )
{
bNeg = true;
fValue=-fValue;
}
sal_Int64 nInt = (sal_Int64)fValue;
fValue -= (double)nInt;
// optimizing hardware may lead to a value of 1.0 after the subtraction
if( fValue == 1.0 || log10( 1.0-fValue ) <= -nPrecision )
{
nInt++;
fValue = 0.0;
}
sal_Int64 nFrac = 0;
if( fValue )
{
fValue *= pow( 10.0, (double)nPrecision );
nFrac = (sal_Int64)fValue;
}
if( bNeg && ( nInt || nFrac ) )
aBuf.append( '-' );
aBuf.append( nInt );
if( nFrac )
{
int i;
aBuf.append( '.' );
sal_Int64 nBound = (sal_Int64)(pow( 10.0, nPrecision - 1.0 )+0.5);
for ( i = 0; ( i < nPrecision ) && nFrac; i++ )
{
sal_Int64 nNumb = nFrac / nBound;
nFrac -= nNumb * nBound;
aBuf.append( nNumb );
nBound /= 10;
}
}
return rWriteContext.write( aBuf.getStr(), aBuf.getLength() );
}
PDFEntry* PDFNumber::clone() const
{
return new PDFNumber( m_fValue );
}
PDFBool::~PDFBool()
{
}
bool PDFBool::emit( EmitContext& rWriteContext ) const
{
return m_bValue ? rWriteContext.write( " true", 5 ) : rWriteContext.write( " false", 6 );
}
PDFEntry* PDFBool::clone() const
{
return new PDFBool( m_bValue );
}
PDFNull::~PDFNull()
{
}
bool PDFNull::emit( EmitContext& rWriteContext ) const
{
return rWriteContext.write( " null", 5 );
}
PDFEntry* PDFNull::clone() const
{
return new PDFNull();
}
PDFObjectRef::~PDFObjectRef()
{
}
bool PDFObjectRef::emit( EmitContext& rWriteContext ) const
{
OStringBuffer aBuf( 16 );
aBuf.append( ' ' );
aBuf.append( sal_Int32( m_nNumber ) );
aBuf.append( ' ' );
aBuf.append( sal_Int32( m_nGeneration ) );
aBuf.append( " R", 2 );
return rWriteContext.write( aBuf.getStr(), aBuf.getLength() );
}
PDFEntry* PDFObjectRef::clone() const
{
return new PDFObjectRef( m_nNumber, m_nGeneration );
}
PDFContainer::~PDFContainer()
{
int nEle = m_aSubElements.size();
for( int i = 0; i < nEle; i++ )
delete m_aSubElements[i];
}
bool PDFContainer::emitSubElements( EmitContext& rWriteContext ) const
{
int nEle = m_aSubElements.size();
for( int i = 0; i < nEle; i++ )
{
if( rWriteContext.m_bDecrypt )
{
const PDFName* pName = dynamic_cast<PDFName*>(m_aSubElements[i]);
if( pName && pName->m_aName.equals( rtl::OString("Encrypt") ) )
{
i++;
continue;
}
}
if( ! m_aSubElements[i]->emit( rWriteContext ) )
return false;
}
return true;
}
void PDFContainer::cloneSubElements( std::vector<PDFEntry*>& rNewSubElements ) const
{
int nEle = m_aSubElements.size();
for( int i = 0; i < nEle; i++ )
rNewSubElements.push_back( m_aSubElements[i]->clone() );
}
PDFObject* PDFContainer::findObject( unsigned int nNumber, unsigned int nGeneration ) const
{
unsigned int nEle = m_aSubElements.size();
for( unsigned int i = 0; i < nEle; i++ )
{
PDFObject* pObject = dynamic_cast<PDFObject*>(m_aSubElements[i]);
if( pObject &&
pObject->m_nNumber == nNumber &&
pObject->m_nGeneration == nGeneration )
{
return pObject;
}
}
return NULL;
}
PDFArray::~PDFArray()
{
}
bool PDFArray::emit( EmitContext& rWriteContext ) const
{
if( ! rWriteContext.write( "[", 1 ) )
return false;
if( ! emitSubElements( rWriteContext ) )
return false;
return rWriteContext.write( "]", 1 );
}
PDFEntry* PDFArray::clone() const
{
PDFArray* pNewAr = new PDFArray();
cloneSubElements( pNewAr->m_aSubElements );
return pNewAr;
}
PDFDict::~PDFDict()
{
}
bool PDFDict::emit( EmitContext& rWriteContext ) const
{
if( ! rWriteContext.write( "<<\n", 3 ) )
return false;
if( ! emitSubElements( rWriteContext ) )
return false;
return rWriteContext.write( "\n>>\n", 4 );
}
void PDFDict::insertValue( const OString& rName, PDFEntry* pValue )
{
if( ! pValue )
eraseValue( rName );
std::hash_map<OString,PDFEntry*,OStringHash>::iterator it = m_aMap.find( rName );
if( it == m_aMap.end() )
{
// new name/value, pair, append it
m_aSubElements.push_back( new PDFName( rName ) );
m_aSubElements.push_back( pValue );
}
else
{
unsigned int nSub = m_aSubElements.size();
for( unsigned int i = 0; i < nSub; i++ )
if( m_aSubElements[i] == it->second )
m_aSubElements[i] = pValue;
delete it->second;
}
m_aMap[ rName ] = pValue;
}
void PDFDict::eraseValue( const OString& rName )
{
unsigned int nEle = m_aSubElements.size();
for( unsigned int i = 0; i < nEle; i++ )
{
PDFName* pName = dynamic_cast<PDFName*>(m_aSubElements[i]);
if( pName && pName->m_aName.equals( rName ) )
{
for( unsigned int j = i+1; j < nEle; j++ )
{
if( dynamic_cast<PDFComment*>(m_aSubElements[j]) == NULL )
{
// free name and value
delete m_aSubElements[j];
delete m_aSubElements[i];
// remove subelements from vector
m_aSubElements.erase( m_aSubElements.begin()+j );
m_aSubElements.erase( m_aSubElements.begin()+i );
buildMap();
return;
}
}
}
}
}
PDFEntry* PDFDict::buildMap()
{
// clear map
m_aMap.clear();
// build map
unsigned int nEle = m_aSubElements.size();
PDFName* pName = NULL;
for( unsigned int i = 0; i < nEle; i++ )
{
if( dynamic_cast<PDFComment*>(m_aSubElements[i]) == NULL )
{
if( pName )
{
m_aMap[ pName->m_aName ] = m_aSubElements[i];
pName = NULL;
}
else if( (pName = dynamic_cast<PDFName*>(m_aSubElements[i])) == NULL )
return m_aSubElements[i];
}
}
return pName;
}
PDFEntry* PDFDict::clone() const
{
PDFDict* pNewDict = new PDFDict();
cloneSubElements( pNewDict->m_aSubElements );
pNewDict->buildMap();
return pNewDict;
}
PDFStream::~PDFStream()
{
}
bool PDFStream::emit( EmitContext& rWriteContext ) const
{
return rWriteContext.copyOrigBytes( m_nBeginOffset, m_nEndOffset-m_nBeginOffset );
}
PDFEntry* PDFStream::clone() const
{
return new PDFStream( m_nBeginOffset, m_nEndOffset, NULL );
}
unsigned int PDFStream::getDictLength( const PDFContainer* pContainer ) const
{
if( ! m_pDict )
return 0;
// find /Length entry, can either be a direct or indirect number object
std::hash_map<OString,PDFEntry*,OStringHash>::const_iterator it =
m_pDict->m_aMap.find( "Length" );
if( it == m_pDict->m_aMap.end() )
return 0;
PDFNumber* pNum = dynamic_cast<PDFNumber*>(it->second);
if( ! pNum && pContainer )
{
PDFObjectRef* pRef = dynamic_cast<PDFObjectRef*>(it->second);
if( pRef )
{
int nEle = pContainer->m_aSubElements.size();
for( int i = 0; i < nEle && ! pNum; i++ )
{
PDFObject* pObj = dynamic_cast<PDFObject*>(pContainer->m_aSubElements[i]);
if( pObj &&
pObj->m_nNumber == pRef->m_nNumber &&
pObj->m_nGeneration == pRef->m_nGeneration )
{
if( pObj->m_pObject )
pNum = dynamic_cast<PDFNumber*>(pObj->m_pObject);
break;
}
}
}
}
return pNum ? static_cast<unsigned int>(pNum->m_fValue) : 0;
}
PDFObject::~PDFObject()
{
}
bool PDFObject::getDeflatedStream( char** ppStream, unsigned int* pBytes, const PDFContainer* pObjectContainer, EmitContext& rContext ) const
{
bool bIsDeflated = false;
if( m_pStream && m_pStream->m_pDict &&
m_pStream->m_nEndOffset > m_pStream->m_nBeginOffset+15
)
{
unsigned int nOuterStreamLen = m_pStream->m_nEndOffset - m_pStream->m_nBeginOffset;
*ppStream = static_cast<char*>(rtl_allocateMemory( nOuterStreamLen ));
if( ! ppStream )
{
*pBytes = 0;
return false;
}
unsigned int nRead = rContext.readOrigBytes( m_pStream->m_nBeginOffset, nOuterStreamLen, *ppStream );
if( nRead != nOuterStreamLen )
{
rtl_freeMemory( *ppStream );
*ppStream = NULL;
*pBytes = 0;
return false;
}
// is there a filter entry ?
std::hash_map<OString,PDFEntry*,OStringHash>::const_iterator it =
m_pStream->m_pDict->m_aMap.find( "Filter" );
if( it != m_pStream->m_pDict->m_aMap.end() )
{
PDFName* pFilter = dynamic_cast<PDFName*>(it->second);
if( ! pFilter )
{
PDFArray* pArray = dynamic_cast<PDFArray*>(it->second);
if( pArray && ! pArray->m_aSubElements.empty() )
{
pFilter = dynamic_cast<PDFName*>(pArray->m_aSubElements.front());
}
}
// is the (first) filter FlateDecode ?
if( pFilter && pFilter->m_aName.equals( "FlateDecode" ) )
{
bIsDeflated = true;
}
}
// prepare compressed data section
char* pStream = *ppStream;
if( pStream[0] == 's' )
pStream += 6; // skip "stream"
// skip line end after "stream"
while( *pStream == '\r' || *pStream == '\n' )
pStream++;
// get the compressed length
*pBytes = m_pStream->getDictLength( pObjectContainer );
if( pStream != *ppStream )
rtl_moveMemory( *ppStream, pStream, *pBytes );
if( rContext.m_bDecrypt )
{
EmitImplData* pEData = getEmitData( rContext );
pEData->decrypt( reinterpret_cast<const sal_uInt8*>(*ppStream),
*pBytes,
reinterpret_cast<sal_uInt8*>(*ppStream),
m_nNumber,
m_nGeneration
); // decrypt inplace
}
}
else
*ppStream = NULL, *pBytes = 0;
return bIsDeflated;
}
static void unzipToBuffer( const char* pBegin, unsigned int nLen,
sal_uInt8** pOutBuf, sal_uInt32* pOutLen )
{
z_stream aZStr;
aZStr.next_in = (Bytef*)pBegin;
aZStr.avail_in = nLen;
aZStr.zalloc = ( alloc_func )0;
aZStr.zfree = ( free_func )0;
aZStr.opaque = ( voidpf )0;
inflateInit(&aZStr);
const unsigned int buf_increment_size = 16384;
*pOutBuf = (sal_uInt8*)rtl_reallocateMemory( *pOutBuf, buf_increment_size );
aZStr.next_out = (Bytef*)*pOutBuf;
aZStr.avail_out = buf_increment_size;
int err = Z_OK;
*pOutLen = buf_increment_size;
while( err != Z_STREAM_END && err >= Z_OK && aZStr.avail_in )
{
err = inflate( &aZStr, Z_NO_FLUSH );
if( aZStr.avail_out == 0 )
{
if( err != Z_STREAM_END )
{
const int nNewAlloc = *pOutLen + buf_increment_size;
*pOutBuf = (sal_uInt8*)rtl_reallocateMemory( *pOutBuf, nNewAlloc );
aZStr.next_out = (Bytef*)(*pOutBuf + *pOutLen);
aZStr.avail_out = buf_increment_size;
*pOutLen = nNewAlloc;
}
}
}
if( err == Z_STREAM_END )
{
if( aZStr.avail_out > 0 )
*pOutLen -= aZStr.avail_out;;
}
inflateEnd(&aZStr);
if( err < Z_OK )
{
rtl_freeMemory( *pOutBuf );
*pOutBuf = NULL;
*pOutLen = 0;
}
}
bool PDFObject::writeStream( EmitContext& rWriteContext, const PDFFile* pParsedFile ) const
{
bool bSuccess = false;
if( m_pStream )
{
char* pStream = NULL;
unsigned int nBytes = 0;
if( getDeflatedStream( &pStream, &nBytes, pParsedFile, rWriteContext ) && nBytes && rWriteContext.m_bDeflate )
{
sal_uInt8* pOutBytes = NULL;
sal_uInt32 nOutBytes = 0;
unzipToBuffer( pStream, nBytes, &pOutBytes, &nOutBytes );
rWriteContext.write( pOutBytes, nOutBytes );
rtl_freeMemory( pOutBytes );
}
else if( pStream && nBytes )
rWriteContext.write( pStream, nBytes );
rtl_freeMemory( pStream );
}
return bSuccess;
}
bool PDFObject::emit( EmitContext& rWriteContext ) const
{
if( ! rWriteContext.write( "\n", 1 ) )
return false;
EmitImplData* pEData = getEmitData( rWriteContext );
if( pEData )
pEData->insertXref( m_nNumber, m_nGeneration, rWriteContext.getCurPos() );
OStringBuffer aBuf( 32 );
aBuf.append( sal_Int32( m_nNumber ) );
aBuf.append( ' ' );
aBuf.append( sal_Int32( m_nGeneration ) );
aBuf.append( " obj\n" );
if( ! rWriteContext.write( aBuf.getStr(), aBuf.getLength() ) )
return false;
if( pEData )
pEData->setDecryptObject( m_nNumber, m_nGeneration );
if( (rWriteContext.m_bDeflate || rWriteContext.m_bDecrypt) && pEData )
{
char* pStream = NULL;
unsigned int nBytes = 0;
bool bDeflate = getDeflatedStream( &pStream, &nBytes, pEData->m_pObjectContainer, rWriteContext );
if( pStream && nBytes )
{
// unzip the stream
sal_uInt8* pOutBytes = NULL;
sal_uInt32 nOutBytes = 0;
if( bDeflate && rWriteContext.m_bDeflate )
unzipToBuffer( pStream, nBytes, &pOutBytes, &nOutBytes );
else
{
// nothing to deflate, but decryption has happened
pOutBytes = (sal_uInt8*)pStream;
nOutBytes = (sal_uInt32)nBytes;
}
if( nOutBytes )
{
// clone this object
PDFObject* pClone = static_cast<PDFObject*>(clone());
// set length in the dictionary to new stream length
PDFNumber* pNewLen = new PDFNumber( double(nOutBytes) );
pClone->m_pStream->m_pDict->insertValue( "Length", pNewLen );
if( bDeflate && rWriteContext.m_bDeflate )
{
// delete flatedecode filter
std::hash_map<OString,PDFEntry*,OStringHash>::const_iterator it =
pClone->m_pStream->m_pDict->m_aMap.find( "Filter" );
if( it != pClone->m_pStream->m_pDict->m_aMap.end() )
{
PDFName* pFilter = dynamic_cast<PDFName*>(it->second);
if( pFilter && pFilter->m_aName.equals( "FlateDecode" ) )
pClone->m_pStream->m_pDict->eraseValue( "Filter" );
else
{
PDFArray* pArray = dynamic_cast<PDFArray*>(it->second);
if( pArray && ! pArray->m_aSubElements.empty() )
{
pFilter = dynamic_cast<PDFName*>(pArray->m_aSubElements.front());
if( pFilter && pFilter->m_aName.equals( "FlateDecode" ) )
{
delete pFilter;
pArray->m_aSubElements.erase( pArray->m_aSubElements.begin() );
}
}
}
}
}
// write sub elements except stream
bool bRet = true;
unsigned int nEle = pClone->m_aSubElements.size();
for( unsigned int i = 0; i < nEle && bRet; i++ )
{
if( pClone->m_aSubElements[i] != pClone->m_pStream )
bRet = pClone->m_aSubElements[i]->emit( rWriteContext );
}
delete pClone;
// write stream
if( bRet )
rWriteContext.write( "stream\n", 7 );
if( bRet )
bRet = rWriteContext.write( pOutBytes, nOutBytes );
if( bRet )
bRet = rWriteContext.write( "\nendstream\nendobj\n", 18 );
rtl_freeMemory( pStream );
if( pOutBytes != (sal_uInt8*)pStream )
rtl_freeMemory( pOutBytes );
if( pEData )
pEData->setDecryptObject( 0, 0 );
return bRet;
}
if( pOutBytes != (sal_uInt8*)pStream )
rtl_freeMemory( pOutBytes );
}
rtl_freeMemory( pStream );
}
bool bRet = emitSubElements( rWriteContext ) &&
rWriteContext.write( "\nendobj\n", 8 );
if( pEData )
pEData->setDecryptObject( 0, 0 );
return bRet;
}
PDFEntry* PDFObject::clone() const
{
PDFObject* pNewOb = new PDFObject( m_nNumber, m_nGeneration );
cloneSubElements( pNewOb->m_aSubElements );
unsigned int nEle = m_aSubElements.size();
for( unsigned int i = 0; i < nEle; i++ )
{
if( m_aSubElements[i] == m_pObject )
pNewOb->m_pObject = pNewOb->m_aSubElements[i];
else if( m_aSubElements[i] == m_pStream && pNewOb->m_pObject )
{
pNewOb->m_pStream = dynamic_cast<PDFStream*>(pNewOb->m_aSubElements[i]);
PDFDict* pNewDict = dynamic_cast<PDFDict*>(pNewOb->m_pObject);
if( pNewDict )
pNewOb->m_pStream->m_pDict = pNewDict;
}
}
return pNewOb;
}
PDFTrailer::~PDFTrailer()
{
}
bool PDFTrailer::emit( EmitContext& rWriteContext ) const
{
// get xref offset
unsigned int nXRefPos = rWriteContext.getCurPos();
// begin xref section, object 0 is always free
if( ! rWriteContext.write( "xref\r\n"
"0 1\r\n"
"0000000000 65535 f\r\n", 31 ) )
return false;
// check if we are emitting a complete PDF file
EmitImplData* pEData = getEmitData( rWriteContext );
if( pEData )
{
// emit object xrefs
const EmitImplData::XRefTable& rXRefs = pEData->m_aXRefTable;
EmitImplData::XRefTable::const_iterator section_begin, section_end;
section_begin = rXRefs.begin();
while( section_begin != rXRefs.end() )
{
// find end of continuous object numbers
section_end = section_begin;
unsigned int nLast = section_begin->first;
while( (++section_end) != rXRefs.end() &&
section_end->first == nLast+1 )
nLast = section_end->first;
// write first object number and number of following entries
OStringBuffer aBuf( 21 );
aBuf.append( sal_Int32( section_begin->first ) );
aBuf.append( ' ' );
aBuf.append( sal_Int32(nLast - section_begin->first + 1) );
aBuf.append( "\r\n" );
if( ! rWriteContext.write( aBuf.getStr(), aBuf.getLength() ) )
return false;
while( section_begin != section_end )
{
// write 20 char entry of form
// 0000offset 00gen n\r\n
aBuf.setLength( 0 );
OString aOffset( OString::valueOf( sal_Int64(section_begin->second.second ) ) );
int nPad = 10 - aOffset.getLength();
for( int i = 0; i < nPad; i++ )
aBuf.append( '0' );
aBuf.append( aOffset );
aBuf.append( ' ' );
OString aGeneration( OString::valueOf( sal_Int32(section_begin->second.first ) ) );
nPad = 5 - aGeneration.getLength();
for( int i = 0; i < nPad; i++ )
aBuf.append( '0' );
aBuf.append( aGeneration );
aBuf.append( " n\r\n" );
if( ! rWriteContext.write( aBuf.getStr(), 20 ) )
return false;
++section_begin;
}
}
}
if( ! rWriteContext.write( "trailer\n", 8 ) )
return false;
if( ! emitSubElements( rWriteContext ) )
return false;
if( ! rWriteContext.write( "startxref\n", 10 ) )
return false;
rtl::OString aOffset( rtl::OString::valueOf( sal_Int32(nXRefPos) ) );
if( ! rWriteContext.write( aOffset.getStr(), aOffset.getLength() ) )
return false;
return rWriteContext.write( "\n%%EOF\n", 7 );
}
PDFEntry* PDFTrailer::clone() const
{
PDFTrailer* pNewTr = new PDFTrailer();
cloneSubElements( pNewTr->m_aSubElements );
unsigned int nEle = m_aSubElements.size();
for( unsigned int i = 0; i < nEle; i++ )
{
if( m_aSubElements[i] == m_pDict )
{
pNewTr->m_pDict = dynamic_cast<PDFDict*>(pNewTr->m_aSubElements[i]);
break;
}
}
return pNewTr;
}
#define ENCRYPTION_KEY_LEN 16
#define ENCRYPTION_BUF_LEN 32
namespace pdfparse {
struct PDFFileImplData
{
bool m_bIsEncrypted;
bool m_bStandardHandler;
sal_uInt32 m_nAlgoVersion;
sal_uInt32 m_nStandardRevision;
sal_uInt32 m_nKeyLength;
sal_uInt8 m_aOEntry[32];
sal_uInt8 m_aUEntry[32];
sal_uInt32 m_nPEntry;
OString m_aDocID;
rtlCipher m_aCipher;
rtlDigest m_aDigest;
sal_uInt8 m_aDecryptionKey[ENCRYPTION_KEY_LEN+5]; // maximum handled key length
PDFFileImplData() :
m_bIsEncrypted( false ),
m_bStandardHandler( false ),
m_nAlgoVersion( 0 ),
m_nStandardRevision( 0 ),
m_nKeyLength( 0 ),
m_nPEntry( 0 ),
m_aCipher( NULL ),
m_aDigest( NULL )
{
rtl_zeroMemory( m_aOEntry, sizeof( m_aOEntry ) );
rtl_zeroMemory( m_aUEntry, sizeof( m_aUEntry ) );
rtl_zeroMemory( m_aDecryptionKey, sizeof( m_aDecryptionKey ) );
}
~PDFFileImplData()
{
if( m_aCipher )
rtl_cipher_destroyARCFOUR( m_aCipher );
if( m_aDigest )
rtl_digest_destroyMD5( m_aDigest );
}
};
}
PDFFile::~PDFFile()
{
if( m_pData )
delete m_pData;
}
bool PDFFile::isEncrypted() const
{
return impl_getData()->m_bIsEncrypted;
}
bool PDFFile::decrypt( const sal_uInt8* pInBuffer, sal_uInt32 nLen, sal_uInt8* pOutBuffer,
unsigned int nObject, unsigned int nGeneration ) const
{
if( ! isEncrypted() )
return false;
if( ! m_pData->m_aCipher )
m_pData->m_aCipher = rtl_cipher_createARCFOUR( rtl_Cipher_ModeStream );
// modify encryption key
sal_uInt32 i = m_pData->m_nKeyLength;
m_pData->m_aDecryptionKey[i++] = sal_uInt8(nObject&0xff);
m_pData->m_aDecryptionKey[i++] = sal_uInt8((nObject>>8)&0xff);
m_pData->m_aDecryptionKey[i++] = sal_uInt8((nObject>>16)&0xff);
m_pData->m_aDecryptionKey[i++] = sal_uInt8(nGeneration&0xff);
m_pData->m_aDecryptionKey[i++] = sal_uInt8((nGeneration>>8)&0xff);
sal_uInt8 aSum[ENCRYPTION_KEY_LEN];
rtl_digest_updateMD5( m_pData->m_aDigest, m_pData->m_aDecryptionKey, i );
rtl_digest_getMD5( m_pData->m_aDigest, aSum, sizeof( aSum ) );
if( i > 16 )
i = 16;
rtlCipherError aErr = rtl_cipher_initARCFOUR( m_pData->m_aCipher,
rtl_Cipher_DirectionDecode,
aSum, i,
NULL, 0 );
if( aErr == rtl_Cipher_E_None )
aErr = rtl_cipher_decodeARCFOUR( m_pData->m_aCipher,
pInBuffer, nLen,
pOutBuffer, nLen );
return aErr == rtl_Cipher_E_None;
}
static const sal_uInt8 nPadString[32] =
{
0x28, 0xBF, 0x4E, 0x5E, 0x4E, 0x75, 0x8A, 0x41, 0x64, 0x00, 0x4E, 0x56, 0xFF, 0xFA, 0x01, 0x08,
0x2E, 0x2E, 0x00, 0xB6, 0xD0, 0x68, 0x3E, 0x80, 0x2F, 0x0C, 0xA9, 0xFE, 0x64, 0x53, 0x69, 0x7A
};
static void pad_or_truncate_to_32( const OString& rStr, sal_Char* pBuffer )
{
int nLen = rStr.getLength();
if( nLen > 32 )
nLen = 32;
const sal_Char* pStr = rStr.getStr();
rtl_copyMemory( pBuffer, pStr, nLen );
int i = 0;
while( nLen < 32 )
pBuffer[nLen++] = nPadString[i++];
}
// pass at least pData->m_nKeyLength bytes in
static sal_uInt32 password_to_key( const OString& rPwd, sal_uInt8* pOutKey, PDFFileImplData* pData, bool bComputeO )
{
// see PDF reference 1.4 Algorithm 3.2
// encrypt pad string
sal_Char aPadPwd[ENCRYPTION_BUF_LEN];
pad_or_truncate_to_32( rPwd, aPadPwd );
rtl_digest_updateMD5( pData->m_aDigest, aPadPwd, sizeof( aPadPwd ) );
if( ! bComputeO )
{
rtl_digest_updateMD5( pData->m_aDigest, pData->m_aOEntry, 32 );
sal_uInt8 aPEntry[4];
aPEntry[0] = static_cast<sal_uInt8>(pData->m_nPEntry & 0xff);
aPEntry[1] = static_cast<sal_uInt8>((pData->m_nPEntry >> 8 ) & 0xff);
aPEntry[2] = static_cast<sal_uInt8>((pData->m_nPEntry >> 16) & 0xff);
aPEntry[3] = static_cast<sal_uInt8>((pData->m_nPEntry >> 24) & 0xff);
rtl_digest_updateMD5( pData->m_aDigest, aPEntry, sizeof(aPEntry) );
rtl_digest_updateMD5( pData->m_aDigest, pData->m_aDocID.getStr(), pData->m_aDocID.getLength() );
}
sal_uInt8 nSum[RTL_DIGEST_LENGTH_MD5];
rtl_digest_getMD5( pData->m_aDigest, nSum, sizeof(nSum) );
if( pData->m_nStandardRevision == 3 )
{
for( int i = 0; i < 50; i++ )
{
rtl_digest_updateMD5( pData->m_aDigest, nSum, sizeof(nSum) );
rtl_digest_getMD5( pData->m_aDigest, nSum, sizeof(nSum) );
}
}
sal_uInt32 nLen = pData->m_nKeyLength;
if( nLen > RTL_DIGEST_LENGTH_MD5 )
nLen = RTL_DIGEST_LENGTH_MD5;
rtl_copyMemory( pOutKey, nSum, nLen );
return nLen;
}
static bool check_user_password( const OString& rPwd, PDFFileImplData* pData )
{
// see PDF reference 1.4 Algorithm 3.6
bool bValid = false;
sal_uInt8 aKey[ENCRYPTION_KEY_LEN];
sal_uInt8 nEncryptedEntry[ENCRYPTION_BUF_LEN];
rtl_zeroMemory( nEncryptedEntry, sizeof(nEncryptedEntry) );
sal_uInt32 nKeyLen = password_to_key( rPwd, aKey, pData, false );
// save (at this time potential) decryption key for later use
rtl_copyMemory( pData->m_aDecryptionKey, aKey, nKeyLen );
if( pData->m_nStandardRevision == 2 )
{
// see PDF reference 1.4 Algorithm 3.4
// encrypt pad string
rtl_cipher_initARCFOUR( pData->m_aCipher, rtl_Cipher_DirectionEncode,
aKey, nKeyLen,
NULL, 0 );
rtl_cipher_encodeARCFOUR( pData->m_aCipher, nPadString, sizeof( nPadString ),
nEncryptedEntry, sizeof( nEncryptedEntry ) );
bValid = (rtl_compareMemory( nEncryptedEntry, pData->m_aUEntry, 32 ) == 0);
}
else if( pData->m_nStandardRevision == 3 )
{
// see PDF reference 1.4 Algorithm 3.5
rtl_digest_updateMD5( pData->m_aDigest, nPadString, sizeof( nPadString ) );
rtl_digest_updateMD5( pData->m_aDigest, pData->m_aDocID.getStr(), pData->m_aDocID.getLength() );
rtl_digest_getMD5( pData->m_aDigest, nEncryptedEntry, sizeof(nEncryptedEntry) );
rtl_cipher_initARCFOUR( pData->m_aCipher, rtl_Cipher_DirectionEncode,
aKey, sizeof(aKey), NULL, 0 );
rtl_cipher_encodeARCFOUR( pData->m_aCipher,
nEncryptedEntry, 16,
nEncryptedEntry, 16 ); // encrypt in place
for( int i = 1; i <= 19; i++ ) // do it 19 times, start with 1
{
sal_uInt8 aTempKey[ENCRYPTION_KEY_LEN];
for( sal_uInt32 j = 0; j < sizeof(aTempKey); j++ )
aTempKey[j] = static_cast<sal_uInt8>( aKey[j] ^ i );
rtl_cipher_initARCFOUR( pData->m_aCipher, rtl_Cipher_DirectionEncode,
aTempKey, sizeof(aTempKey), NULL, 0 );
rtl_cipher_encodeARCFOUR( pData->m_aCipher,
nEncryptedEntry, 16,
nEncryptedEntry, 16 ); // encrypt in place
}
bValid = (rtl_compareMemory( nEncryptedEntry, pData->m_aUEntry, 16 ) == 0);
}
return bValid;
}
bool PDFFile::setupDecryptionData( const OString& rPwd ) const
{
if( !impl_getData()->m_bIsEncrypted )
return rPwd.getLength() == 0;
// check if we can handle this encryption at all
if( ! m_pData->m_bStandardHandler ||
m_pData->m_nAlgoVersion < 1 ||
m_pData->m_nAlgoVersion > 2 ||
m_pData->m_nStandardRevision < 2 ||
m_pData->m_nStandardRevision > 3 )
return false;
if( ! m_pData->m_aCipher )
m_pData->m_aCipher = rtl_cipher_createARCFOUR(rtl_Cipher_ModeStream);
if( ! m_pData->m_aDigest )
m_pData->m_aDigest = rtl_digest_createMD5();
// first try user password
bool bValid = check_user_password( rPwd, m_pData );
if( ! bValid )
{
// try owner password
// see PDF reference 1.4 Algorithm 3.7
sal_uInt8 aKey[ENCRYPTION_KEY_LEN];
sal_uInt8 nPwd[ENCRYPTION_BUF_LEN];
rtl_zeroMemory( nPwd, sizeof(nPwd) );
sal_uInt32 nKeyLen = password_to_key( rPwd, aKey, m_pData, true );
if( m_pData->m_nStandardRevision == 2 )
{
rtl_cipher_initARCFOUR( m_pData->m_aCipher, rtl_Cipher_DirectionDecode,
aKey, nKeyLen, NULL, 0 );
rtl_cipher_decodeARCFOUR( m_pData->m_aCipher,
m_pData->m_aOEntry, 32,
nPwd, 32 );
}
else if( m_pData->m_nStandardRevision == 3 )
{
rtl_copyMemory( nPwd, m_pData->m_aOEntry, 32 );
for( int i = 19; i >= 0; i-- )
{
sal_uInt8 nTempKey[ENCRYPTION_KEY_LEN];
for( unsigned int j = 0; j < sizeof(nTempKey); j++ )
nTempKey[j] = sal_uInt8(aKey[j] ^ i);
rtl_cipher_initARCFOUR( m_pData->m_aCipher, rtl_Cipher_DirectionDecode,
nTempKey, nKeyLen, NULL, 0 );
rtl_cipher_decodeARCFOUR( m_pData->m_aCipher,
nPwd, 32,
nPwd, 32 ); // decrypt inplace
}
}
bValid = check_user_password( OString( (sal_Char*)nPwd, 32 ), m_pData );
}
return bValid;
}
rtl::OUString PDFFile::getDecryptionKey() const
{
rtl::OUStringBuffer aBuf( ENCRYPTION_KEY_LEN * 2 );
if( impl_getData()->m_bIsEncrypted )
{
for( sal_uInt32 i = 0; i < m_pData->m_nKeyLength; i++ )
{
static const sal_Unicode pHexTab[16] = { '0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'A', 'B', 'C', 'D', 'E', 'F' };
aBuf.append( pHexTab[(m_pData->m_aDecryptionKey[i] >> 4) & 0x0f] );
aBuf.append( pHexTab[(m_pData->m_aDecryptionKey[i] & 0x0f)] );
}
}
return aBuf.makeStringAndClear();
}
PDFFileImplData* PDFFile::impl_getData() const
{
if( m_pData )
return m_pData;
m_pData = new PDFFileImplData();
// check for encryption dict in a trailer
unsigned int nElements = m_aSubElements.size();
while( nElements-- > 0 )
{
PDFTrailer* pTrailer = dynamic_cast<PDFTrailer*>(m_aSubElements[nElements]);
if( pTrailer && pTrailer->m_pDict )
{
// search doc id
PDFDict::Map::iterator doc_id = pTrailer->m_pDict->m_aMap.find( "ID" );
if( doc_id != pTrailer->m_pDict->m_aMap.end() )
{
PDFArray* pArr = dynamic_cast<PDFArray*>(doc_id->second);
if( pArr && pArr->m_aSubElements.size() > 0 )
{
PDFString* pStr = dynamic_cast<PDFString*>(pArr->m_aSubElements[0]);
if( pStr )
m_pData->m_aDocID = pStr->getFilteredString();
#if OSL_DEBUG_LEVEL > 1
fprintf( stderr, "DocId is <" );
for( int i = 0; i < m_pData->m_aDocID.getLength(); i++ )
fprintf( stderr, "%.2x", (unsigned int)sal_uInt8(m_pData->m_aDocID.getStr()[i]) );
fprintf( stderr, ">\n" );
#endif
}
}
// search Encrypt entry
PDFDict::Map::iterator enc =
pTrailer->m_pDict->m_aMap.find( "Encrypt" );
if( enc != pTrailer->m_pDict->m_aMap.end() )
{
PDFDict* pDict = dynamic_cast<PDFDict*>(enc->second);
if( ! pDict )
{
PDFObjectRef* pRef = dynamic_cast<PDFObjectRef*>(enc->second);
if( pRef )
{
PDFObject* pObj = findObject( pRef );
if( pObj && pObj->m_pObject )
pDict = dynamic_cast<PDFDict*>(pObj->m_pObject);
}
}
if( pDict )
{
PDFDict::Map::iterator filter = pDict->m_aMap.find( "Filter" );
PDFDict::Map::iterator version = pDict->m_aMap.find( "V" );
PDFDict::Map::iterator len = pDict->m_aMap.find( "Length" );
PDFDict::Map::iterator o_ent = pDict->m_aMap.find( "O" );
PDFDict::Map::iterator u_ent = pDict->m_aMap.find( "U" );
PDFDict::Map::iterator r_ent = pDict->m_aMap.find( "R" );
PDFDict::Map::iterator p_ent = pDict->m_aMap.find( "P" );
if( filter != pDict->m_aMap.end() )
{
m_pData->m_bIsEncrypted = true;
m_pData->m_nKeyLength = 5;
if( version != pDict->m_aMap.end() )
{
PDFNumber* pNum = dynamic_cast<PDFNumber*>(version->second);
if( pNum )
m_pData->m_nAlgoVersion = static_cast<sal_uInt32>(pNum->m_fValue);
}
if( m_pData->m_nAlgoVersion >= 3 )
m_pData->m_nKeyLength = 16;
if( len != pDict->m_aMap.end() )
{
PDFNumber* pNum = dynamic_cast<PDFNumber*>(len->second);
if( pNum )
m_pData->m_nKeyLength = static_cast<sal_uInt32>(pNum->m_fValue) / 8;
}
PDFName* pFilter = dynamic_cast<PDFName*>(filter->second);
if( pFilter && pFilter->getFilteredName().equalsAscii( "Standard" ) )
m_pData->m_bStandardHandler = true;
if( o_ent != pDict->m_aMap.end() )
{
PDFString* pString = dynamic_cast<PDFString*>(o_ent->second);
if( pString )
{
OString aEnt = pString->getFilteredString();
if( aEnt.getLength() == 32 )
rtl_copyMemory( m_pData->m_aOEntry, aEnt.getStr(), 32 );
#if OSL_DEBUG_LEVEL > 1
else
{
fprintf( stderr, "O entry has length %d, should be 32 <", (int)aEnt.getLength() );
for( int i = 0; i < aEnt.getLength(); i++ )
fprintf( stderr, " %.2X", (unsigned int)sal_uInt8(aEnt.getStr()[i]) );
fprintf( stderr, ">\n" );
}
#endif
}
}
if( u_ent != pDict->m_aMap.end() )
{
PDFString* pString = dynamic_cast<PDFString*>(u_ent->second);
if( pString )
{
OString aEnt = pString->getFilteredString();
if( aEnt.getLength() == 32 )
rtl_copyMemory( m_pData->m_aUEntry, aEnt.getStr(), 32 );
#if OSL_DEBUG_LEVEL > 1
else
{
fprintf( stderr, "U entry has length %d, should be 32 <", (int)aEnt.getLength() );
for( int i = 0; i < aEnt.getLength(); i++ )
fprintf( stderr, " %.2X", (unsigned int)sal_uInt8(aEnt.getStr()[i]) );
fprintf( stderr, ">\n" );
}
#endif
}
}
if( r_ent != pDict->m_aMap.end() )
{
PDFNumber* pNum = dynamic_cast<PDFNumber*>(r_ent->second);
if( pNum )
m_pData->m_nStandardRevision = static_cast<sal_uInt32>(pNum->m_fValue);
}
if( p_ent != pDict->m_aMap.end() )
{
PDFNumber* pNum = dynamic_cast<PDFNumber*>(p_ent->second);
if( pNum )
m_pData->m_nPEntry = static_cast<sal_uInt32>(static_cast<sal_Int32>(pNum->m_fValue));
#if OSL_DEBUG_LEVEL > 1
fprintf( stderr, "p entry is %p\n", (void*)m_pData->m_nPEntry );
#endif
}
#if OSL_DEBUG_LEVEL > 1
fprintf( stderr, "Encryption dict: sec handler: %s, version = %d, revision = %d, key length = %d\n",
pFilter ? OUStringToOString( pFilter->getFilteredName(), RTL_TEXTENCODING_UTF8 ).getStr() : "<unknown>",
(int)m_pData->m_nAlgoVersion, (int)m_pData->m_nStandardRevision, (int)m_pData->m_nKeyLength );
#endif
break;
}
}
}
}
}
return m_pData;
}
bool PDFFile::emit( EmitContext& rWriteContext ) const
{
setEmitData( rWriteContext, new EmitImplData( this ) );
OStringBuffer aBuf( 32 );
aBuf.append( "%PDF-" );
aBuf.append( sal_Int32( m_nMajor ) );
aBuf.append( '.' );
aBuf.append( sal_Int32( m_nMinor ) );
aBuf.append( "\n" );
if( ! rWriteContext.write( aBuf.getStr(), aBuf.getLength() ) )
return false;
return emitSubElements( rWriteContext );
}
PDFEntry* PDFFile::clone() const
{
PDFFile* pNewFl = new PDFFile();
pNewFl->m_nMajor = m_nMajor;
pNewFl->m_nMinor = m_nMinor;
cloneSubElements( pNewFl->m_aSubElements );
return pNewFl;
}
PDFPart::~PDFPart()
{
}
bool PDFPart::emit( EmitContext& rWriteContext ) const
{
return emitSubElements( rWriteContext );
}
PDFEntry* PDFPart::clone() const
{
PDFPart* pNewPt = new PDFPart();
cloneSubElements( pNewPt->m_aSubElements );
return pNewPt;
}