blob: 5d09f75509861556c2a81fc3b7f496e0aef6b981 [file] [log] [blame]
/**************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_sc.hxx"
#include "compressedarray.hxx"
#include "address.hxx"
#include <algorithm>
template< typename A, typename D >
ScCompressedArray<A,D>::ScCompressedArray( A nMaxAccessP, const D& rValue,
size_t nDeltaP )
: nCount(1)
, nLimit(1)
, nDelta( nDeltaP > 0 ? nDeltaP : 1)
, pData( new DataEntry[1])
, nMaxAccess( nMaxAccessP)
{
pData[0].aValue = rValue;
pData[0].nEnd = nMaxAccess;
}
template< typename A, typename D >
ScCompressedArray<A,D>::ScCompressedArray( A nMaxAccessP, const D* pDataArray,
size_t nDataCount )
: nCount(0)
, nLimit( nDataCount)
, nDelta( nScCompressedArrayDelta)
, pData( new DataEntry[nDataCount])
, nMaxAccess( nMaxAccessP)
{
D aValue = pDataArray[0];
for (size_t j=0; j<nDataCount; ++j)
{
if (!(aValue == pDataArray[j]))
{
pData[nCount].aValue = aValue;
pData[nCount].nEnd = j-1;
++nCount;
aValue = pDataArray[j];
}
}
pData[nCount].aValue = aValue;
pData[nCount].nEnd = nMaxAccess;
++nCount;
Resize( nCount);
}
template< typename A, typename D >
ScCompressedArray<A,D>::~ScCompressedArray()
{
delete[] pData;
}
template< typename A, typename D >
void ScCompressedArray<A,D>::Resize( size_t nNewLimit)
{
if ((nCount <= nNewLimit && nNewLimit < nLimit) || nLimit < nNewLimit)
{
nLimit = nNewLimit;
DataEntry* pNewData = new DataEntry[nLimit];
memcpy( pNewData, pData, nCount*sizeof(DataEntry));
delete[] pData;
pData = pNewData;
}
}
template< typename A, typename D >
size_t ScCompressedArray<A,D>::Search( A nAccess ) const
{
if (nAccess == 0)
return 0;
long nLo = 0;
long nHi = static_cast<long>(nCount) - 1;
long nStart = 0;
long nEnd = 0;
long i = 0;
bool bFound = (nCount == 1);
while (!bFound && nLo <= nHi)
{
i = (nLo + nHi) / 2;
if (i > 0)
nStart = (long) pData[i - 1].nEnd;
else
nStart = -1;
nEnd = (long) pData[i].nEnd;
if (nEnd < (long) nAccess)
nLo = ++i;
else
if (nStart >= (long) nAccess)
nHi = --i;
else
bFound = true;
}
return (bFound ? static_cast<size_t>(i) : (nAccess < 0 ? 0 : nCount-1));
}
template< typename A, typename D >
void ScCompressedArray<A,D>::SetValue( A nStart, A nEnd, const D& rValue )
{
if (0 <= nStart && nStart <= nMaxAccess && 0 <= nEnd && nEnd <= nMaxAccess
&& nStart <= nEnd)
{
if ((nStart == 0) && (nEnd == nMaxAccess))
Reset( rValue);
else
{
// Create a temporary copy in case we got a reference passed that
// points to a part of the array to be reallocated.
D aNewVal( rValue);
size_t nNeeded = nCount + 2;
if (nLimit < nNeeded)
{
nLimit += nDelta;
if (nLimit < nNeeded)
nLimit = nNeeded;
DataEntry* pNewData = new DataEntry[nLimit];
memcpy( pNewData, pData, nCount*sizeof(DataEntry));
delete[] pData;
pData = pNewData;
}
size_t ni; // number of leading entries
size_t nInsert; // insert position (nMaxAccess+1 := no insert)
bool bCombined = false;
bool bSplit = false;
if (nStart > 0)
{
// skip leading
ni = Search( nStart);
nInsert = nMaxAccess+1;
if (!(pData[ni].aValue == aNewVal))
{
if (ni == 0 || (pData[ni-1].nEnd < nStart - 1))
{ // may be a split or a simple insert or just a shrink,
// row adjustment is done further down
if (pData[ni].nEnd > nEnd)
bSplit = true;
ni++;
nInsert = ni;
}
else if (ni > 0 && pData[ni-1].nEnd == nStart - 1)
nInsert = ni;
}
if (ni > 0 && pData[ni-1].aValue == aNewVal)
{ // combine
pData[ni-1].nEnd = nEnd;
nInsert = nMaxAccess+1;
bCombined = true;
}
}
else
{
nInsert = 0;
ni = 0;
}
size_t nj = ni; // stop position of range to replace
while (nj < nCount && pData[nj].nEnd <= nEnd)
nj++;
if (!bSplit)
{
if (nj < nCount && pData[nj].aValue == aNewVal)
{ // combine
if (ni > 0)
{
if (pData[ni-1].aValue == aNewVal)
{ // adjacent entries
pData[ni-1].nEnd = pData[nj].nEnd;
nj++;
}
else if (ni == nInsert)
pData[ni-1].nEnd = nStart - 1; // shrink
}
nInsert = nMaxAccess+1;
bCombined = true;
}
else if (ni > 0 && ni == nInsert)
pData[ni-1].nEnd = nStart - 1; // shrink
}
if (ni < nj)
{ // remove middle entries
if (!bCombined)
{ // replace one entry
pData[ni].nEnd = nEnd;
pData[ni].aValue = aNewVal;
ni++;
nInsert = nMaxAccess+1;
}
if (ni < nj)
{ // remove entries
memmove( pData + ni, pData + nj,
(nCount - nj) * sizeof(DataEntry));
nCount -= nj - ni;
}
}
if (nInsert < static_cast<size_t>(nMaxAccess+1))
{ // insert or append new entry
if (nInsert <= nCount)
{
if (!bSplit)
memmove( pData + nInsert + 1, pData + nInsert,
(nCount - nInsert) * sizeof(DataEntry));
else
{
memmove( pData + nInsert + 2, pData + nInsert,
(nCount - nInsert) * sizeof(DataEntry));
pData[nInsert+1] = pData[nInsert-1];
nCount++;
}
}
if (nInsert)
pData[nInsert-1].nEnd = nStart - 1;
pData[nInsert].nEnd = nEnd;
pData[nInsert].aValue = aNewVal;
nCount++;
}
}
}
}
template< typename A, typename D >
void ScCompressedArray<A,D>::CopyFrom( const ScCompressedArray<A,D>& rArray, A nStart,
A nEnd, long nSourceDy )
{
size_t nIndex;
A nRegionEnd;
for (A j=nStart; j<=nEnd; ++j)
{
const D& rValue = (j==nStart ?
rArray.GetValue( j+nSourceDy, nIndex, nRegionEnd) :
rArray.GetNextValue( nIndex, nRegionEnd));
nRegionEnd -= nSourceDy;
if (nRegionEnd > nEnd)
nRegionEnd = nEnd;
SetValue( j, nRegionEnd, rValue);
j = nRegionEnd;
}
}
template< typename A, typename D >
const D& ScCompressedArray<A,D>::Insert( A nStart, size_t nAccessCount )
{
size_t nIndex = Search( nStart);
// No real insertion is needed, simply extend the one entry and adapt all
// following. In case nStart points to the start row of an entry, extend
// the previous entry (inserting before nStart).
if (nIndex > 0 && pData[nIndex-1].nEnd+1 == nStart)
--nIndex;
const D& rValue = pData[nIndex].aValue; // the value "copied"
do
{
pData[nIndex].nEnd += nAccessCount;
if (pData[nIndex].nEnd >= nMaxAccess)
{
pData[nIndex].nEnd = nMaxAccess;
nCount = nIndex + 1; // discard trailing entries
}
} while (++nIndex < nCount);
return rValue;
}
template< typename A, typename D >
void ScCompressedArray<A,D>::Remove( A nStart, size_t nAccessCount )
{
A nEnd = nStart + nAccessCount - 1;
size_t nIndex = Search( nStart);
// equalize/combine/remove all entries in between
if (nEnd > pData[nIndex].nEnd)
SetValue( nStart, nEnd, pData[nIndex].aValue);
// remove an exactly matching entry by shifting up all following by one
if ((nStart == 0 || (nIndex > 0 && nStart == pData[nIndex-1].nEnd+1)) &&
pData[nIndex].nEnd == nEnd && nIndex < nCount-1)
{
// In case removing an entry results in two adjacent entries with
// identical data, combine them into one. This is also necessary to
// make the algorithm used in SetValue() work correctly, it relies on
// the fact that consecutive values actually differ.
size_t nRemove;
if (nIndex > 0 && pData[nIndex-1].aValue == pData[nIndex+1].aValue)
{
nRemove = 2;
--nIndex;
}
else
nRemove = 1;
memmove( pData + nIndex, pData + nIndex + nRemove, (nCount - (nIndex +
nRemove)) * sizeof(DataEntry));
nCount -= nRemove;
}
// adjust end rows, nIndex still being valid
do
{
pData[nIndex].nEnd -= nAccessCount;
} while (++nIndex < nCount);
pData[nCount-1].nEnd = nMaxAccess;
}
template< typename A, typename D >
A ScCompressedArray<A,D>::GetLastUnequalAccess( A nStart, const D& rCompare )
{
A nEnd = ::std::numeric_limits<A>::max();
size_t nIndex = nCount-1;
while (1)
{
if (pData[nIndex].aValue != rCompare)
{
nEnd = pData[nIndex].nEnd;
break; // while
}
else
{
if (nIndex > 0)
{
--nIndex;
if (pData[nIndex].nEnd < nStart)
break; // while
}
else
break; // while
}
}
return nEnd;
}
// === ScSummableCompressedArray =============================================
template< typename A, typename D >
unsigned long ScSummableCompressedArray<A,D>::SumValues( A nStart, A nEnd ) const
{
size_t nIndex = this->Search( nStart);
unsigned long nSum = SumValuesContinuation( nStart, nEnd, nIndex);
if (nEnd > this->nMaxAccess)
nSum += this->pData[this->nCount-1].aValue * (nEnd - this->nMaxAccess);
return nSum;
}
template< typename A, typename D >
unsigned long ScSummableCompressedArray<A,D>::SumValuesContinuation(
A nStart, A nEnd, size_t& nIndex ) const
{
unsigned long nSum = 0;
A nS = nStart;
while (nIndex < this->nCount && nS <= nEnd)
{
A nE = ::std::min( this->pData[nIndex].nEnd, nEnd);
// FIXME: test for overflow in a single region?
unsigned long nNew = (unsigned long) this->pData[nIndex].aValue * (nE - nS + 1);
nSum += nNew;
if (nSum < nNew)
return ::std::numeric_limits<unsigned long>::max();
nS = nE + 1;
if (nS <= nEnd)
++nIndex;
}
return nSum;
}
template< typename A, typename D >
unsigned long ScSummableCompressedArray<A,D>::SumScaledValuesContinuation(
A nStart, A nEnd, size_t& nIndex, double fScale ) const
{
unsigned long nSum = 0;
A nS = nStart;
while (nIndex < this->nCount && nS <= nEnd)
{
A nE = ::std::min( this->pData[nIndex].nEnd, nEnd);
unsigned long nScaledVal = (unsigned long) (this->pData[nIndex].aValue * fScale);
// FIXME: test for overflow in a single region?
unsigned long nNew = nScaledVal * (nE - nS + 1);
nSum += nNew;
if (nSum < nNew)
return ::std::numeric_limits<unsigned long>::max();
nS = nE + 1;
if (nS <= nEnd)
++nIndex;
}
return nSum;
}
// === ScBitMaskCompressedArray ==============================================
template< typename A, typename D >
void ScBitMaskCompressedArray<A,D>::AndValue( A nStart, A nEnd,
const D& rValueToAnd )
{
if (nStart > nEnd)
return;
size_t nIndex = this->Search( nStart);
do
{
if ((this->pData[nIndex].aValue & rValueToAnd) != this->pData[nIndex].aValue)
{
A nS = ::std::max( (nIndex>0 ? this->pData[nIndex-1].nEnd+1 : 0), nStart);
A nE = ::std::min( this->pData[nIndex].nEnd, nEnd);
this->SetValue( nS, nE, this->pData[nIndex].aValue & rValueToAnd);
if (nE >= nEnd)
break; // while
nIndex = this->Search( nE + 1);
}
else if (this->pData[nIndex].nEnd >= nEnd)
break; // while
else
++nIndex;
} while (nIndex < this->nCount);
}
template< typename A, typename D >
void ScBitMaskCompressedArray<A,D>::OrValue( A nStart, A nEnd,
const D& rValueToOr )
{
if (nStart > nEnd)
return;
size_t nIndex = this->Search( nStart);
do
{
if ((this->pData[nIndex].aValue | rValueToOr) != this->pData[nIndex].aValue)
{
A nS = ::std::max( (nIndex>0 ? this->pData[nIndex-1].nEnd+1 : 0), nStart);
A nE = ::std::min( this->pData[nIndex].nEnd, nEnd);
this->SetValue( nS, nE, this->pData[nIndex].aValue | rValueToOr);
if (nE >= nEnd)
break; // while
nIndex = this->Search( nE + 1);
}
else if (this->pData[nIndex].nEnd >= nEnd)
break; // while
else
++nIndex;
} while (nIndex < this->nCount);
}
template< typename A, typename D >
void ScBitMaskCompressedArray<A,D>::CopyFromAnded(
const ScBitMaskCompressedArray<A,D>& rArray, A nStart, A nEnd,
const D& rValueToAnd, long nSourceDy )
{
size_t nIndex;
A nRegionEnd;
for (A j=nStart; j<=nEnd; ++j)
{
const D& rValue = (j==nStart ?
rArray.GetValue( j+nSourceDy, nIndex, nRegionEnd) :
rArray.GetNextValue( nIndex, nRegionEnd));
nRegionEnd -= nSourceDy;
if (nRegionEnd > nEnd)
nRegionEnd = nEnd;
this->SetValue( j, nRegionEnd, rValue & rValueToAnd);
j = nRegionEnd;
}
}
template< typename A, typename D >
void ScBitMaskCompressedArray<A,D>::CopyFromOred(
const ScBitMaskCompressedArray<A,D>& rArray, A nStart, A nEnd,
const D& rValueToOr, long nSourceDy )
{
size_t nIndex;
A nRegionEnd;
for (A j=nStart; j<=nEnd; ++j)
{
const D& rValue = (j==nStart ?
rArray.GetValue( j+nSourceDy, nIndex, nRegionEnd) :
rArray.GetNextValue( nIndex, nRegionEnd));
nRegionEnd -= nSourceDy;
if (nRegionEnd > nEnd)
nRegionEnd = nEnd;
this->SetValue( j, nRegionEnd, rValue | rValueToOr);
j = nRegionEnd;
}
}
template< typename A, typename D >
A ScBitMaskCompressedArray<A,D>::GetBitStateStart( A nEnd,
const D& rBitMask, const D& rMaskedCompare ) const
{
A nStart = ::std::numeric_limits<A>::max();
size_t nIndex = this->Search( nEnd);
while ((this->pData[nIndex].aValue & rBitMask) == rMaskedCompare)
{
if (nIndex > 0)
{
--nIndex;
nStart = this->pData[nIndex].nEnd + 1;
}
else
{
nStart = 0;
break; // while
}
}
return nStart;
}
template< typename A, typename D >
A ScBitMaskCompressedArray<A,D>::GetBitStateEnd( A nStart,
const D& rBitMask, const D& rMaskedCompare ) const
{
A nEnd = ::std::numeric_limits<A>::max();
size_t nIndex = this->Search( nStart);
while (nIndex < this->nCount && (this->pData[nIndex].aValue & rBitMask) ==
rMaskedCompare)
{
nEnd = this->pData[nIndex].nEnd;
++nIndex;
}
return nEnd;
}
template< typename A, typename D >
A ScBitMaskCompressedArray<A,D>::GetFirstForCondition( A nStart, A nEnd,
const D& rBitMask, const D& rMaskedCompare ) const
{
size_t nIndex = this->Search( nStart);
do
{
if ((this->pData[nIndex].aValue & rBitMask) == rMaskedCompare)
{
A nFound = nIndex > 0 ? this->pData[nIndex-1].nEnd + 1 : 0;
return ::std::max( nFound, nStart);
}
if (this->pData[nIndex].nEnd >= nEnd)
break; // while
++nIndex;
} while (nIndex < this->nCount);
return ::std::numeric_limits<A>::max();
}
template< typename A, typename D >
A ScBitMaskCompressedArray<A,D>::GetLastForCondition( A nStart, A nEnd,
const D& rBitMask, const D& rMaskedCompare ) const
{
size_t nIndex = this->Search( nEnd);
while (1)
{
if ((this->pData[nIndex].aValue & rBitMask) == rMaskedCompare)
return ::std::min( this->pData[nIndex].nEnd, nEnd);
if (nIndex > 0)
{
--nIndex;
if (this->pData[nIndex].nEnd < nStart)
break; // while
}
else
break; // while
}
return ::std::numeric_limits<A>::max();
}
template< typename A, typename D >
A ScBitMaskCompressedArray<A,D>::CountForCondition( A nStart, A nEnd,
const D& rBitMask, const D& rMaskedCompare ) const
{
A nRet = 0;
size_t nIndex = this->Search( nStart);
do
{
if ((this->pData[nIndex].aValue & rBitMask) == rMaskedCompare)
{
A nS = ::std::max( (nIndex>0 ? this->pData[nIndex-1].nEnd+1 : 0), nStart);
A nE = ::std::min( this->pData[nIndex].nEnd, nEnd);
nRet += nE - nS + 1;
}
if (this->pData[nIndex].nEnd >= nEnd)
break; // while
++nIndex;
} while (nIndex < this->nCount);
return nRet;
}
template< typename A, typename D >
size_t ScBitMaskCompressedArray<A,D>::FillArrayForCondition( A nStart, A nEnd,
const D& rBitMask, const D& rMaskedCompare,
A * pArray, size_t nArraySize ) const
{
size_t nUsed = 0;
size_t nIndex = this->Search( nStart);
while (nIndex < this->nCount && nUsed < nArraySize)
{
if ((this->pData[nIndex].aValue & rBitMask) == rMaskedCompare)
{
A nS = ::std::max( (nIndex>0 ? this->pData[nIndex-1].nEnd+1 : 0), nStart);
A nE = ::std::min( this->pData[nIndex].nEnd, nEnd);
while (nS <= nE && nUsed < nArraySize)
pArray[nUsed++] = nS++;
}
if (this->pData[nIndex].nEnd >= nEnd)
break; // while
++nIndex;
}
return nUsed;
}
template< typename A, typename D >
bool ScBitMaskCompressedArray<A,D>::HasCondition( A nStart, A nEnd,
const D& rBitMask, const D& rMaskedCompare ) const
{
size_t nIndex = this->Search( nStart);
do
{
if ((this->pData[nIndex].aValue & rBitMask) == rMaskedCompare)
return true;
if (this->pData[nIndex].nEnd >= nEnd)
break; // while
++nIndex;
} while (nIndex < this->nCount);
return false;
}
template< typename A, typename D >
A ScBitMaskCompressedArray<A,D>::CountForAnyBitCondition( A nStart, A nEnd,
const D& rBitMask ) const
{
A nRet = 0;
size_t nIndex = this->Search( nStart);
do
{
if ((this->pData[nIndex].aValue & rBitMask) != 0)
{
A nS = ::std::max( (nIndex>0 ? this->pData[nIndex-1].nEnd+1 : 0), nStart);
A nE = ::std::min( this->pData[nIndex].nEnd, nEnd);
nRet += nE - nS + 1;
}
if (this->pData[nIndex].nEnd >= nEnd)
break; // while
++nIndex;
} while (nIndex < this->nCount);
return nRet;
}
template< typename A, typename D >
A ScBitMaskCompressedArray<A,D>::GetLastAnyBitAccess( A nStart,
const D& rBitMask ) const
{
A nEnd = ::std::numeric_limits<A>::max();
size_t nIndex = this->nCount-1;
while (1)
{
if ((this->pData[nIndex].aValue & rBitMask) != 0)
{
nEnd = this->pData[nIndex].nEnd;
break; // while
}
else
{
if (nIndex > 0)
{
--nIndex;
if (this->pData[nIndex].nEnd < nStart)
break; // while
}
else
break; // while
}
}
return nEnd;
}
template< typename A, typename D >
template< typename S >
unsigned long ScBitMaskCompressedArray<A,D>::SumCoupledArrayForCondition(
A nStart, A nEnd, const D& rBitMask, const D& rMaskedCompare,
const ScSummableCompressedArray<A,S>& rArray ) const
{
unsigned long nSum = 0;
A nS = nStart;
size_t nIndex1 = this->Search( nStart);
size_t nIndex2 = rArray.Search( nStart);
do
{
if ((this->pData[nIndex1].aValue & rBitMask) == rMaskedCompare)
{
while (nIndex2 < rArray.GetEntryCount() &&
rArray.GetDataEntry(nIndex2).nEnd < nS)
++nIndex2;
unsigned long nNew = rArray.SumValuesContinuation( nS,
::std::min( this->pData[nIndex1].nEnd, nEnd), nIndex2);
nSum += nNew;
if (nSum < nNew)
return ::std::numeric_limits<unsigned long>::max();
}
nS = this->pData[nIndex1].nEnd + 1;
++nIndex1;
} while (nIndex1 < this->nCount && nS <= nEnd);
if (nEnd > this->nMaxAccess &&
(this->pData[this->GetEntryCount()-1].aValue & rBitMask) == rMaskedCompare)
nSum += rArray.GetDataEntry(rArray.GetEntryCount()-1).aValue * (nEnd -
this->nMaxAccess);
return nSum;
}
template< typename A, typename D >
template< typename S >
unsigned long ScBitMaskCompressedArray<A,D>::SumScaledCoupledArrayForCondition(
A nStart, A nEnd, const D& rBitMask, const D& rMaskedCompare,
const ScSummableCompressedArray<A,S>& rArray, double fScale ) const
{
unsigned long nSum = 0;
A nS = nStart;
size_t nIndex1 = this->Search( nStart);
size_t nIndex2 = rArray.Search( nStart);
do
{
if ((this->pData[nIndex1].aValue & rBitMask) == rMaskedCompare)
{
while (nIndex2 < rArray.GetEntryCount() &&
rArray.GetDataEntry(nIndex2).nEnd < nS)
++nIndex2;
unsigned long nNew = rArray.SumScaledValuesContinuation( nS,
::std::min( this->pData[nIndex1].nEnd, nEnd), nIndex2, fScale);
nSum += nNew;
if (nSum < nNew)
return ::std::numeric_limits<unsigned long>::max();
}
nS = this->pData[nIndex1].nEnd + 1;
++nIndex1;
} while (nIndex1 < this->nCount && nS <= nEnd);
if (nEnd > this->nMaxAccess &&
(this->pData[this->GetEntryCount()-1].aValue & rBitMask) == rMaskedCompare)
nSum += (unsigned long)
(rArray.GetDataEntry(rArray.GetEntryCount()-1).aValue * fScale) *
(nEnd - this->nMaxAccess);
return nSum;
}
// === ScCompressedArrayIterator =============================================
template< typename A, typename D >
template< typename X >
void ScCompressedArrayIterator<A,D>::Follow(
const ScCompressedArrayIterator<A,X>& rIter )
{
nCurrent = rIter.GetPos();
if (GetRangeStart() <= nCurrent && nCurrent <= GetRangeEnd())
; // nothing
else if (nCurrent > GetRangeEnd())
{
A nPos = nCurrent; // nCurrent gets changed in NextRange()
bool bAdv;
do
{
bAdv = NextRange();
} while (bAdv && GetRangeEnd() < nPos);
nCurrent = nPos;
}
else
nIndex = rArray.Search( nCurrent);
}
// === ScCoupledCompressedArrayIterator ======================================
template< typename A, typename D, typename S >
ScCoupledCompressedArrayIterator<A,D,S>::ScCoupledCompressedArrayIterator(
const ScBitMaskCompressedArray<A,D> & rArray1, A nStart, A nEnd,
const D& rBitMaskP, const D& rMaskedCompareP,
const ScCompressedArray<A,S> & rArray2 )
: aIter1( rArray1, nStart, nEnd )
, aIter2( rArray2, nStart, nEnd )
, rBitMask( rBitMaskP )
, rMaskedCompare( rMaskedCompareP )
{
InitLimits();
}
template< typename A, typename D, typename S >
void ScCoupledCompressedArrayIterator<A,D,S>::InitLimits()
{
bool bFound = true;
bool bMoved = false;
while (bFound && ((*aIter1 & rBitMask) != rMaskedCompare))
{
bFound = aIter1.NextRange();
bMoved = true;
}
if (bMoved && bFound)
aIter2.Follow( aIter1);
}
template< typename A, typename D, typename S >
void ScCoupledCompressedArrayIterator<A,D,S>::NewLimits( A nStart, A nEnd )
{
aIter1.NewLimits( nStart, nEnd);
aIter2.NewLimits( nStart, nEnd);
InitLimits();
}
template< typename A, typename D, typename S >
bool ScCoupledCompressedArrayIterator<A,D,S>::NextRange()
{
bool bAdv;
if (aIter1.GetRangeEnd() <= aIter2.GetRangeEnd())
{
// Advance bit mask array until condition is met, coupled array
// follows.
do
{
bAdv = aIter1.NextRange();
} while (bAdv && ((*aIter1 & rBitMask) != rMaskedCompare));
if (bAdv)
aIter2.Follow( aIter1);
}
else
{
// Make coupled array catch up with bit mask array.
do
{
bAdv = aIter2.NextRange();
} while (bAdv && aIter2.GetRangeEnd() < aIter1.GetRangeStart());
if (bAdv)
aIter1.Follow( aIter2); // synchronize aIter1.nCurrent
}
return operator bool();
}
template< typename A, typename D, typename S >
void ScCoupledCompressedArrayIterator<A,D,S>::Resync( A nPos )
{
aIter1.Resync( nPos);
aIter2.Resync( nPos);
InitLimits();
}
// === Force instantiation of specializations ================================
template class ScCompressedArray< SCROW, sal_uInt16>; // heights, base class
template class ScSummableCompressedArray< SCROW, sal_uInt16>; // heights
template class ScCompressedArray< SCROW, sal_uInt8>; // flags, base class
template class ScBitMaskCompressedArray< SCROW, sal_uInt8>; // flags
template unsigned long ScBitMaskCompressedArray< SCROW,
sal_uInt8>::SumCoupledArrayForCondition( SCROW, SCROW, const sal_uInt8&, const sal_uInt8&,
const ScSummableCompressedArray< SCROW, sal_uInt16>&) const;
template unsigned long ScBitMaskCompressedArray< SCROW,
sal_uInt8>::SumScaledCoupledArrayForCondition( SCROW, SCROW, const sal_uInt8&,
const sal_uInt8&, const ScSummableCompressedArray< SCROW, sal_uInt16>&,
double) const;
template void ScCompressedArrayIterator< SCROW, sal_uInt16>::Follow(
const ScCompressedArrayIterator< SCROW, sal_uInt8>&);
template class ScCoupledCompressedArrayIterator< SCROW, sal_uInt8, sal_uInt16>;
// === EOF ===================================================================