blob: 8aa1858a3800c2a12a6b9b0d1815fab923417fd5 [file] [log] [blame]
/**************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
#include "oox/helper/binaryinputstream.hxx"
#include <com/sun/star/io/XInputStream.hpp>
#include <com/sun/star/io/XSeekable.hpp>
#include <string.h>
#include <vector>
#include <rtl/strbuf.hxx>
#include <rtl/ustrbuf.hxx>
#include "oox/helper/binaryoutputstream.hxx"
namespace oox {
// ============================================================================
using namespace ::com::sun::star::io;
using namespace ::com::sun::star::uno;
using ::rtl::OString;
using ::rtl::OStringBuffer;
using ::rtl::OStringToOUString;
using ::rtl::OUString;
using ::rtl::OUStringBuffer;
namespace {
const sal_Int32 INPUTSTREAM_BUFFERSIZE = 0x8000;
} // namespace
// ============================================================================
OString BinaryInputStream::readNulCharArray()
{
OStringBuffer aBuffer;
for( sal_uInt8 nChar = readuInt8(); !mbEof && (nChar > 0); readValue( nChar ) )
aBuffer.append( static_cast< sal_Char >( nChar ) );
return aBuffer.makeStringAndClear();
}
OUString BinaryInputStream::readNulCharArrayUC( rtl_TextEncoding eTextEnc )
{
return OStringToOUString( readNulCharArray(), eTextEnc );
}
OUString BinaryInputStream::readNulUnicodeArray()
{
OUStringBuffer aBuffer;
for( sal_uInt16 nChar = readuInt16(); !mbEof && (nChar > 0); readValue( nChar ) )
aBuffer.append( static_cast< sal_Unicode >( nChar ) );
return aBuffer.makeStringAndClear();
}
OString BinaryInputStream::readCharArray( sal_Int32 nChars, bool bAllowNulChars )
{
if( nChars <= 0 )
return OString();
::std::vector< sal_uInt8 > aBuffer;
sal_Int32 nCharsRead = readArray( aBuffer, nChars );
if( nCharsRead <= 0 )
return OString();
aBuffer.resize( static_cast< size_t >( nCharsRead ) );
if( !bAllowNulChars )
::std::replace( aBuffer.begin(), aBuffer.end(), '\0', '?' );
return OString( reinterpret_cast< sal_Char* >( &aBuffer.front() ), nCharsRead );
}
OUString BinaryInputStream::readCharArrayUC( sal_Int32 nChars, rtl_TextEncoding eTextEnc, bool bAllowNulChars )
{
return OStringToOUString( readCharArray( nChars, bAllowNulChars ), eTextEnc );
}
OUString BinaryInputStream::readUnicodeArray( sal_Int32 nChars, bool bAllowNulChars )
{
if( nChars <= 0 )
return OUString();
::std::vector< sal_uInt16 > aBuffer;
sal_Int32 nCharsRead = readArray( aBuffer, nChars );
if( nCharsRead <= 0 )
return OUString();
aBuffer.resize( static_cast< size_t >( nCharsRead ) );
if( !bAllowNulChars )
::std::replace( aBuffer.begin(), aBuffer.begin() + nCharsRead, '\0', '?' );
OUStringBuffer aStringBuffer;
aStringBuffer.ensureCapacity( nCharsRead );
for( ::std::vector< sal_uInt16 >::iterator aIt = aBuffer.begin(), aEnd = aBuffer.end(); aIt != aEnd; ++aIt )
aStringBuffer.append( static_cast< sal_Unicode >( *aIt ) );
return aStringBuffer.makeStringAndClear();
}
OUString BinaryInputStream::readCompressedUnicodeArray( sal_Int32 nChars, bool bCompressed, bool bAllowNulChars )
{
return bCompressed ?
// ISO-8859-1 maps all byte values 0xHH to the same Unicode code point U+00HH
readCharArrayUC( nChars, RTL_TEXTENCODING_ISO_8859_1, bAllowNulChars ) :
readUnicodeArray( nChars, bAllowNulChars );
}
void BinaryInputStream::copyToStream( BinaryOutputStream& rOutStrm, sal_Int64 nBytes, sal_Int32 nAtomSize )
{
if( nBytes > 0 )
{
// make buffer size a multiple of the passed atom size
sal_Int32 nBufferSize = getLimitedValue< sal_Int32, sal_Int64 >( nBytes, 0, (INPUTSTREAM_BUFFERSIZE / nAtomSize) * nAtomSize );
StreamDataSequence aBuffer( nBufferSize );
while( nBytes > 0 )
{
sal_Int32 nReadSize = getLimitedValue< sal_Int32, sal_Int64 >( nBytes, 0, nBufferSize );
sal_Int32 nBytesRead = readData( aBuffer, nReadSize, nAtomSize );
rOutStrm.writeData( aBuffer );
if( nReadSize == nBytesRead )
nBytes -= nReadSize;
else
nBytes = 0;
}
}
}
// ============================================================================
BinaryXInputStream::BinaryXInputStream( const Reference< XInputStream >& rxInStrm, bool bAutoClose ) :
BinaryStreamBase( Reference< XSeekable >( rxInStrm, UNO_QUERY ).is() ),
BinaryXSeekableStream( Reference< XSeekable >( rxInStrm, UNO_QUERY ) ),
maBuffer( INPUTSTREAM_BUFFERSIZE ),
mxInStrm( rxInStrm ),
mbAutoClose( bAutoClose && rxInStrm.is() )
{
mbEof = !mxInStrm.is();
}
BinaryXInputStream::~BinaryXInputStream()
{
close();
}
void BinaryXInputStream::close()
{
OSL_ENSURE( !mbAutoClose || mxInStrm.is(), "BinaryXInputStream::close - invalid call" );
if( mbAutoClose && mxInStrm.is() ) try
{
mxInStrm->closeInput();
}
catch( Exception& )
{
OSL_ENSURE( false, "BinaryXInputStream::close - closing input stream failed" );
}
mxInStrm.clear();
mbAutoClose = false;
BinaryXSeekableStream::close();
}
sal_Int32 BinaryXInputStream::readData( StreamDataSequence& orData, sal_Int32 nBytes, size_t /*nAtomSize*/ )
{
sal_Int32 nRet = 0;
if( !mbEof && (nBytes > 0) ) try
{
nRet = mxInStrm->readBytes( orData, nBytes );
mbEof = nRet != nBytes;
}
catch( Exception& )
{
mbEof = true;
}
return nRet;
}
sal_Int32 BinaryXInputStream::readMemory( void* opMem, sal_Int32 nBytes, size_t nAtomSize )
{
sal_Int32 nRet = 0;
if( !mbEof && (nBytes > 0) )
{
sal_Int32 nBufferSize = getLimitedValue< sal_Int32, sal_Int32 >( nBytes, 0, INPUTSTREAM_BUFFERSIZE );
sal_uInt8* opnMem = reinterpret_cast< sal_uInt8* >( opMem );
while( !mbEof && (nBytes > 0) )
{
sal_Int32 nReadSize = getLimitedValue< sal_Int32, sal_Int32 >( nBytes, 0, nBufferSize );
sal_Int32 nBytesRead = readData( maBuffer, nReadSize, nAtomSize );
if( nBytesRead > 0 )
memcpy( opnMem, maBuffer.getConstArray(), static_cast< size_t >( nBytesRead ) );
opnMem += nBytesRead;
nBytes -= nBytesRead;
nRet += nBytesRead;
}
}
return nRet;
}
void BinaryXInputStream::skip( sal_Int32 nBytes, size_t /*nAtomSize*/ )
{
if( !mbEof ) try
{
mxInStrm->skipBytes( nBytes );
}
catch( Exception& )
{
mbEof = true;
}
}
// ============================================================================
SequenceInputStream::SequenceInputStream( const StreamDataSequence& rData ) :
BinaryStreamBase( true ),
SequenceSeekableStream( rData )
{
}
sal_Int32 SequenceInputStream::readData( StreamDataSequence& orData, sal_Int32 nBytes, size_t /*nAtomSize*/ )
{
sal_Int32 nReadBytes = 0;
if( !mbEof )
{
nReadBytes = getMaxBytes( nBytes );
orData.realloc( nReadBytes );
if( nReadBytes > 0 )
memcpy( orData.getArray(), mpData->getConstArray() + mnPos, static_cast< size_t >( nReadBytes ) );
mnPos += nReadBytes;
mbEof = nReadBytes < nBytes;
}
return nReadBytes;
}
sal_Int32 SequenceInputStream::readMemory( void* opMem, sal_Int32 nBytes, size_t /*nAtomSize*/ )
{
sal_Int32 nReadBytes = 0;
if( !mbEof )
{
nReadBytes = getMaxBytes( nBytes );
if( nReadBytes > 0 )
memcpy( opMem, mpData->getConstArray() + mnPos, static_cast< size_t >( nReadBytes ) );
mnPos += nReadBytes;
mbEof = nReadBytes < nBytes;
}
return nReadBytes;
}
void SequenceInputStream::skip( sal_Int32 nBytes, size_t /*nAtomSize*/ )
{
if( !mbEof )
{
sal_Int32 nSkipBytes = getMaxBytes( nBytes );
mnPos += nSkipBytes;
mbEof = nSkipBytes < nBytes;
}
}
// ============================================================================
RelativeInputStream::RelativeInputStream( BinaryInputStream& rInStrm, sal_Int64 nSize ) :
BinaryStreamBase( rInStrm.isSeekable() ),
mpInStrm( &rInStrm ),
mnStartPos( rInStrm.tell() ),
mnRelPos( 0 )
{
sal_Int64 nRemaining = rInStrm.getRemaining();
mnSize = (nRemaining >= 0) ? ::std::min( nSize, nRemaining ) : nSize;
mbEof = mbEof || rInStrm.isEof() || (mnSize < 0);
}
sal_Int64 RelativeInputStream::size() const
{
return mpInStrm ? mnSize : -1;
}
sal_Int64 RelativeInputStream::tell() const
{
return mpInStrm ? mnRelPos : -1;
}
void RelativeInputStream::seek( sal_Int64 nPos )
{
if( mpInStrm && isSeekable() && (mnStartPos >= 0) )
{
mnRelPos = getLimitedValue< sal_Int64, sal_Int64 >( nPos, 0, mnSize );
mpInStrm->seek( mnStartPos + mnRelPos );
mbEof = (mnRelPos != nPos) || mpInStrm->isEof();
}
}
void RelativeInputStream::close()
{
mpInStrm = 0;
mbEof = true;
}
sal_Int32 RelativeInputStream::readData( StreamDataSequence& orData, sal_Int32 nBytes, size_t nAtomSize )
{
sal_Int32 nReadBytes = 0;
if( !mbEof )
{
sal_Int32 nMaxBytes = getMaxBytes( nBytes );
nReadBytes = mpInStrm->readData( orData, nMaxBytes, nAtomSize );
mnRelPos += nReadBytes;
mbEof = (nMaxBytes < nBytes) || mpInStrm->isEof();
}
return nReadBytes;
}
sal_Int32 RelativeInputStream::readMemory( void* opMem, sal_Int32 nBytes, size_t nAtomSize )
{
sal_Int32 nReadBytes = 0;
if( !mbEof )
{
sal_Int32 nMaxBytes = getMaxBytes( nBytes );
nReadBytes = mpInStrm->readMemory( opMem, nMaxBytes, nAtomSize );
mnRelPos += nReadBytes;
mbEof = (nMaxBytes < nBytes) || mpInStrm->isEof();
}
return nReadBytes;
}
void RelativeInputStream::skip( sal_Int32 nBytes, size_t nAtomSize )
{
if( !mbEof )
{
sal_Int32 nSkipBytes = getMaxBytes( nBytes );
mpInStrm->skip( nSkipBytes, nAtomSize );
mnRelPos += nSkipBytes;
mbEof = nSkipBytes < nBytes;
}
}
// ============================================================================
} // namespace oox