blob: c8a8309a69b1ee5762c88ba3381ea621948c7ae2 [file] [log] [blame]
/**************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_drawinglayer.hxx"
#include <drawinglayer/primitive3d/polygontubeprimitive3d.hxx>
#include <drawinglayer/attribute/materialattribute3d.hxx>
#include <basegfx/matrix/b3dhommatrix.hxx>
#include <basegfx/polygon/b3dpolypolygon.hxx>
#include <drawinglayer/primitive3d/polypolygonprimitive3d.hxx>
#include <basegfx/polygon/b3dpolypolygontools.hxx>
#include <drawinglayer/primitive3d/transformprimitive3d.hxx>
#include <drawinglayer/primitive3d/drawinglayer_primitivetypes3d.hxx>
//////////////////////////////////////////////////////////////////////////////
namespace drawinglayer
{
namespace primitive3d
{
namespace // anonymous namespace
{
Primitive3DSequence getLineTubeSegments(
sal_uInt32 nSegments,
const attribute::MaterialAttribute3D& rMaterial)
{
// static data for buffered tube primitives
static Primitive3DSequence aLineTubeList;
static sal_uInt32 nLineTubeSegments(0L);
static attribute::MaterialAttribute3D aLineMaterial;
// may exclusively change static data, use mutex
::osl::Mutex m_mutex;
if(nSegments != nLineTubeSegments || !(rMaterial == aLineMaterial))
{
nLineTubeSegments = nSegments;
aLineMaterial = rMaterial;
aLineTubeList = Primitive3DSequence();
}
if(!aLineTubeList.hasElements() && 0L != nLineTubeSegments)
{
const basegfx::B3DPoint aLeft(0.0, 0.0, 0.0);
const basegfx::B3DPoint aRight(1.0, 0.0, 0.0);
basegfx::B3DPoint aLastLeft(0.0, 1.0, 0.0);
basegfx::B3DPoint aLastRight(1.0, 1.0, 0.0);
basegfx::B3DHomMatrix aRot;
aRot.rotate(F_2PI / (double)nLineTubeSegments, 0.0, 0.0);
aLineTubeList.realloc(nLineTubeSegments);
for(sal_uInt32 a(0L); a < nLineTubeSegments; a++)
{
const basegfx::B3DPoint aNextLeft(aRot * aLastLeft);
const basegfx::B3DPoint aNextRight(aRot * aLastRight);
basegfx::B3DPolygon aNewPolygon;
aNewPolygon.append(aNextLeft);
aNewPolygon.setNormal(0L, basegfx::B3DVector(aNextLeft - aLeft));
aNewPolygon.append(aLastLeft);
aNewPolygon.setNormal(1L, basegfx::B3DVector(aLastLeft - aLeft));
aNewPolygon.append(aLastRight);
aNewPolygon.setNormal(2L, basegfx::B3DVector(aLastRight - aRight));
aNewPolygon.append(aNextRight);
aNewPolygon.setNormal(3L, basegfx::B3DVector(aNextRight - aRight));
aNewPolygon.setClosed(true);
const basegfx::B3DPolyPolygon aNewPolyPolygon(aNewPolygon);
const Primitive3DReference xRef(new PolyPolygonMaterialPrimitive3D(aNewPolyPolygon, aLineMaterial, false));
aLineTubeList[a] = xRef;
aLastLeft = aNextLeft;
aLastRight = aNextRight;
}
}
return aLineTubeList;
}
Primitive3DSequence getLineCapSegments(
sal_uInt32 nSegments,
const attribute::MaterialAttribute3D& rMaterial)
{
// static data for buffered tube primitives
static Primitive3DSequence aLineCapList;
static sal_uInt32 nLineCapSegments(0L);
static attribute::MaterialAttribute3D aLineMaterial;
// may exclusively change static data, use mutex
::osl::Mutex m_mutex;
if(nSegments != nLineCapSegments || !(rMaterial == aLineMaterial))
{
nLineCapSegments = nSegments;
aLineMaterial = rMaterial;
aLineCapList = Primitive3DSequence();
}
if(!aLineCapList.hasElements() && 0L != nLineCapSegments)
{
const basegfx::B3DPoint aNull(0.0, 0.0, 0.0);
basegfx::B3DPoint aLast(0.0, 1.0, 0.0);
basegfx::B3DHomMatrix aRot;
aRot.rotate(F_2PI / (double)nLineCapSegments, 0.0, 0.0);
aLineCapList.realloc(nLineCapSegments);
for(sal_uInt32 a(0L); a < nLineCapSegments; a++)
{
const basegfx::B3DPoint aNext(aRot * aLast);
basegfx::B3DPolygon aNewPolygon;
aNewPolygon.append(aLast);
aNewPolygon.setNormal(0L, basegfx::B3DVector(aLast - aNull));
aNewPolygon.append(aNext);
aNewPolygon.setNormal(1L, basegfx::B3DVector(aNext - aNull));
aNewPolygon.append(aNull);
aNewPolygon.setNormal(2L, basegfx::B3DVector(-1.0, 0.0, 0.0));
aNewPolygon.setClosed(true);
const basegfx::B3DPolyPolygon aNewPolyPolygon(aNewPolygon);
const Primitive3DReference xRef(new PolyPolygonMaterialPrimitive3D(aNewPolyPolygon, aLineMaterial, false));
aLineCapList[a] = xRef;
aLast = aNext;
}
}
return aLineCapList;
}
Primitive3DSequence getLineCapRoundSegments(
sal_uInt32 nSegments,
const attribute::MaterialAttribute3D& rMaterial)
{
// static data for buffered tube primitives
static Primitive3DSequence aLineCapRoundList;
static sal_uInt32 nLineCapRoundSegments(0);
static attribute::MaterialAttribute3D aLineMaterial;
// may exclusively change static data, use mutex
::osl::Mutex m_mutex;
if(nSegments != nLineCapRoundSegments || !(rMaterial == aLineMaterial))
{
nLineCapRoundSegments = nSegments;
aLineMaterial = rMaterial;
aLineCapRoundList = Primitive3DSequence();
}
if(!aLineCapRoundList.hasElements() && nLineCapRoundSegments)
{
// calculate new horizontal segments
sal_uInt32 nVerSeg(nSegments / 2);
if(nVerSeg < 1)
{
nVerSeg = 1;
}
// create half-sphere; upper half of unit sphere
basegfx::B3DPolyPolygon aSphere(
basegfx::tools::createUnitSphereFillPolyPolygon(
nSegments,
nVerSeg,
true,
F_PI2, 0.0,
0.0, F_2PI));
const sal_uInt32 nCount(aSphere.count());
if(nCount)
{
// rotate to have sphere cap orientned to negative X-Axis; do not
// forget to transform normals, too
basegfx::B3DHomMatrix aSphereTrans;
aSphereTrans.rotate(0.0, 0.0, F_PI2);
aSphere.transform(aSphereTrans);
aSphere.transformNormals(aSphereTrans);
// realloc for primitives and create based on polygon snippets
aLineCapRoundList.realloc(nCount);
for(sal_uInt32 a(0); a < nCount; a++)
{
const basegfx::B3DPolygon aPartPolygon(aSphere.getB3DPolygon(a));
const basegfx::B3DPolyPolygon aPartPolyPolygon(aPartPolygon);
// need to create one primitive per Polygon since the primitive
// is for planar PolyPolygons which is definitely not the case here
aLineCapRoundList[a] = new PolyPolygonMaterialPrimitive3D(
aPartPolyPolygon,
rMaterial,
false);
}
}
}
return aLineCapRoundList;
}
Primitive3DSequence getLineJoinSegments(
sal_uInt32 nSegments,
const attribute::MaterialAttribute3D& rMaterial,
double fAngle,
double /*fDegreeStepWidth*/,
double fMiterMinimumAngle,
basegfx::B2DLineJoin aLineJoin)
{
// nSegments is for whole circle, adapt to half circle
const sal_uInt32 nVerSeg(nSegments >> 1L);
std::vector< BasePrimitive3D* > aResultVector;
if(nVerSeg)
{
if(basegfx::B2DLINEJOIN_ROUND == aLineJoin)
{
// calculate new horizontal segments
const sal_uInt32 nHorSeg(basegfx::fround((fAngle / F_2PI) * (double)nSegments));
if(nHorSeg)
{
// create half-sphere
const basegfx::B3DPolyPolygon aSphere(basegfx::tools::createUnitSphereFillPolyPolygon(nHorSeg, nVerSeg, true, F_PI2, -F_PI2, 0.0, fAngle));
for(sal_uInt32 a(0L); a < aSphere.count(); a++)
{
const basegfx::B3DPolygon aPartPolygon(aSphere.getB3DPolygon(a));
const basegfx::B3DPolyPolygon aPartPolyPolygon(aPartPolygon);
BasePrimitive3D* pNew = new PolyPolygonMaterialPrimitive3D(aPartPolyPolygon, rMaterial, false);
aResultVector.push_back(pNew);
}
}
else
{
// fallback to bevel when there is not at least one segment hor and ver
aLineJoin = basegfx::B2DLINEJOIN_BEVEL;
}
}
if(basegfx::B2DLINEJOIN_MIDDLE == aLineJoin
|| basegfx::B2DLINEJOIN_BEVEL == aLineJoin
|| basegfx::B2DLINEJOIN_MITER == aLineJoin)
{
if(basegfx::B2DLINEJOIN_MITER == aLineJoin)
{
const double fMiterAngle(fAngle/2.0);
if(fMiterAngle < fMiterMinimumAngle)
{
// fallback to bevel when miter's angle is too small
aLineJoin = basegfx::B2DLINEJOIN_BEVEL;
}
}
const double fInc(F_PI / (double)nVerSeg);
const double fSin(sin(-fAngle));
const double fCos(cos(-fAngle));
const bool bMiter(basegfx::B2DLINEJOIN_MITER == aLineJoin);
const double fMiterSin(bMiter ? sin(-(fAngle/2.0)) : 0.0);
const double fMiterCos(bMiter ? cos(-(fAngle/2.0)) : 0.0);
double fPos(-F_PI2);
basegfx::B3DPoint aPointOnXY, aPointRotY, aNextPointOnXY, aNextPointRotY;
basegfx::B3DPoint aCurrMiter, aNextMiter;
basegfx::B3DPolygon aNewPolygon, aMiterPolygon;
// close polygon
aNewPolygon.setClosed(true);
aMiterPolygon.setClosed(true);
for(sal_uInt32 a(0L); a < nVerSeg; a++)
{
const bool bFirst(0L == a);
const bool bLast(a + 1L == nVerSeg);
if(bFirst || !bLast)
{
fPos += fInc;
aNextPointOnXY = basegfx::B3DPoint(
cos(fPos),
sin(fPos),
0.0);
aNextPointRotY = basegfx::B3DPoint(
aNextPointOnXY.getX() * fCos,
aNextPointOnXY.getY(),
aNextPointOnXY.getX() * fSin);
if(bMiter)
{
aNextMiter = basegfx::B3DPoint(
aNextPointOnXY.getX(),
aNextPointOnXY.getY(),
fMiterSin * (aNextPointOnXY.getX() / fMiterCos));
}
}
if(bFirst)
{
aNewPolygon.clear();
if(bMiter)
{
aNewPolygon.append(basegfx::B3DPoint(0.0, -1.0, 0.0));
aNewPolygon.append(aNextPointOnXY);
aNewPolygon.append(aNextMiter);
aMiterPolygon.clear();
aMiterPolygon.append(basegfx::B3DPoint(0.0, -1.0, 0.0));
aMiterPolygon.append(aNextMiter);
aMiterPolygon.append(aNextPointRotY);
}
else
{
aNewPolygon.append(basegfx::B3DPoint(0.0, -1.0, 0.0));
aNewPolygon.append(aNextPointOnXY);
aNewPolygon.append(aNextPointRotY);
}
}
else if(bLast)
{
aNewPolygon.clear();
if(bMiter)
{
aNewPolygon.append(basegfx::B3DPoint(0.0, 1.0, 0.0));
aNewPolygon.append(aCurrMiter);
aNewPolygon.append(aPointOnXY);
aMiterPolygon.clear();
aMiterPolygon.append(basegfx::B3DPoint(0.0, 1.0, 0.0));
aMiterPolygon.append(aPointRotY);
aMiterPolygon.append(aCurrMiter);
}
else
{
aNewPolygon.append(basegfx::B3DPoint(0.0, 1.0, 0.0));
aNewPolygon.append(aPointRotY);
aNewPolygon.append(aPointOnXY);
}
}
else
{
aNewPolygon.clear();
if(bMiter)
{
aNewPolygon.append(aPointOnXY);
aNewPolygon.append(aNextPointOnXY);
aNewPolygon.append(aNextMiter);
aNewPolygon.append(aCurrMiter);
aMiterPolygon.clear();
aMiterPolygon.append(aCurrMiter);
aMiterPolygon.append(aNextMiter);
aMiterPolygon.append(aNextPointRotY);
aMiterPolygon.append(aPointRotY);
}
else
{
aNewPolygon.append(aPointRotY);
aNewPolygon.append(aPointOnXY);
aNewPolygon.append(aNextPointOnXY);
aNewPolygon.append(aNextPointRotY);
}
}
// set normals
for(sal_uInt32 b(0L); b < aNewPolygon.count(); b++)
{
aNewPolygon.setNormal(b, basegfx::B3DVector(aNewPolygon.getB3DPoint(b)));
}
// create primitive
if(aNewPolygon.count())
{
const basegfx::B3DPolyPolygon aNewPolyPolygon(aNewPolygon);
BasePrimitive3D* pNew = new PolyPolygonMaterialPrimitive3D(aNewPolyPolygon, rMaterial, false);
aResultVector.push_back(pNew);
}
if(bMiter && aMiterPolygon.count())
{
// set normals
for(sal_uInt32 c(0L); c < aMiterPolygon.count(); c++)
{
aMiterPolygon.setNormal(c, basegfx::B3DVector(aMiterPolygon.getB3DPoint(c)));
}
// create primitive
const basegfx::B3DPolyPolygon aMiterPolyPolygon(aMiterPolygon);
BasePrimitive3D* pNew = new PolyPolygonMaterialPrimitive3D(aMiterPolyPolygon, rMaterial, false);
aResultVector.push_back(pNew);
}
// prepare next step
if(bFirst || !bLast)
{
aPointOnXY = aNextPointOnXY;
aPointRotY = aNextPointRotY;
if(bMiter)
{
aCurrMiter = aNextMiter;
}
}
}
}
}
Primitive3DSequence aRetval(aResultVector.size());
for(sal_uInt32 a(0L); a < aResultVector.size(); a++)
{
aRetval[a] = Primitive3DReference(aResultVector[a]);
}
return aRetval;
}
basegfx::B3DHomMatrix getRotationFromVector(const basegfx::B3DVector& rVector)
{
// build transformation from unit vector to vector
basegfx::B3DHomMatrix aRetval;
// get applied rotations from angles in XY and in XZ (cartesian)
const double fRotInXY(atan2(rVector.getY(), rVector.getXZLength()));
const double fRotInXZ(atan2(-rVector.getZ(), rVector.getX()));
// apply rotations. Rot around Z needs to be done first, so apply in two steps
aRetval.rotate(0.0, 0.0, fRotInXY);
aRetval.rotate(0.0, fRotInXZ, 0.0);
return aRetval;
}
} // end of anonymous namespace
} // end of namespace primitive3d
} // end of namespace drawinglayer
//////////////////////////////////////////////////////////////////////////////
using namespace com::sun::star;
//////////////////////////////////////////////////////////////////////////////
namespace drawinglayer
{
namespace primitive3d
{
Primitive3DSequence PolygonTubePrimitive3D::impCreate3DDecomposition(const geometry::ViewInformation3D& /*rViewInformation*/) const
{
const sal_uInt32 nPointCount(getB3DPolygon().count());
std::vector< BasePrimitive3D* > aResultVector;
if(nPointCount)
{
if(basegfx::fTools::more(getRadius(), 0.0))
{
const attribute::MaterialAttribute3D aMaterial(getBColor());
static sal_uInt32 nSegments(8); // default for 3d line segments, for more quality just raise this value (in even steps)
const bool bClosed(getB3DPolygon().isClosed());
const bool bNoLineJoin(basegfx::B2DLINEJOIN_NONE == getLineJoin());
const sal_uInt32 nLoopCount(bClosed ? nPointCount : nPointCount - 1);
basegfx::B3DPoint aLast(getB3DPolygon().getB3DPoint(nPointCount - 1));
basegfx::B3DPoint aCurr(getB3DPolygon().getB3DPoint(0));
for(sal_uInt32 a(0); a < nLoopCount; a++)
{
// get next data
const basegfx::B3DPoint aNext(getB3DPolygon().getB3DPoint((a + 1) % nPointCount));
const basegfx::B3DVector aForw(aNext - aCurr);
const double fForwLen(aForw.getLength());
if(basegfx::fTools::more(fForwLen, 0.0))
{
// find out if linecap is active
const bool bFirst(!a);
const bool bLast(a + 1 == nLoopCount);
const bool bLineCapPossible(!bClosed && (bFirst || bLast));
const bool bLineCapRound(bLineCapPossible && com::sun::star::drawing::LineCap_ROUND == getLineCap());
const bool bLineCapSquare(bLineCapPossible && com::sun::star::drawing::LineCap_SQUARE == getLineCap());
// get rotation from vector, this describes rotation from (1, 0, 0) to aForw
basegfx::B3DHomMatrix aRotVector(getRotationFromVector(aForw));
// prepare transformations for tube and cap
basegfx::B3DHomMatrix aTubeTrans;
basegfx::B3DHomMatrix aCapTrans;
// cap gets radius size
aCapTrans.scale(getRadius(), getRadius(), getRadius());
if(bLineCapSquare)
{
// when square line cap just prolong line segment in X, maybe 2 x radius when
// first and last (simple line segment)
const double fExtraLength(bFirst && bLast ? getRadius() * 2.0 : getRadius());
aTubeTrans.scale(fForwLen + fExtraLength, getRadius(), getRadius());
if(bFirst)
{
// correct start positions for tube and cap when first and square prolonged
aTubeTrans.translate(-getRadius(), 0.0, 0.0);
aCapTrans.translate(-getRadius(), 0.0, 0.0);
}
}
else
{
// normal tube size
aTubeTrans.scale(fForwLen, getRadius(), getRadius());
}
// rotate and translate tube and cap
aTubeTrans *= aRotVector;
aTubeTrans.translate(aCurr.getX(), aCurr.getY(), aCurr.getZ());
aCapTrans *= aRotVector;
aCapTrans.translate(aCurr.getX(), aCurr.getY(), aCurr.getZ());
if(bNoLineJoin || (!bClosed && bFirst))
{
// line start edge, build transformed primitiveVector3D
Primitive3DSequence aSequence;
if(bLineCapRound && bFirst)
{
// LineCapRound used
aSequence = getLineCapRoundSegments(nSegments, aMaterial);
}
else
{
// simple closing cap
aSequence = getLineCapSegments(nSegments, aMaterial);
}
TransformPrimitive3D* pNewTransformedA = new TransformPrimitive3D(aCapTrans, aSequence);
aResultVector.push_back(pNewTransformedA);
}
else
{
const basegfx::B3DVector aBack(aCurr - aLast);
const double fCross(basegfx::cross(aBack, aForw).getLength());
if(!basegfx::fTools::equalZero(fCross))
{
// line connect non-parallel, aBack, aForw, use getLineJoin()
const double fAngle(acos(aBack.scalar(aForw) / (fForwLen * aBack.getLength()))); // 0.0 .. F_PI2
Primitive3DSequence aNewList(
getLineJoinSegments(
nSegments,
aMaterial,
fAngle,
getDegreeStepWidth(),
getMiterMinimumAngle(),
getLineJoin()));
// calculate transformation. First, get angle in YZ between nForw projected on (1, 0, 0) and nBack
basegfx::B3DHomMatrix aInvRotVector(aRotVector);
aInvRotVector.invert();
basegfx::B3DVector aTransBack(aInvRotVector * aBack);
const double fRotInYZ(atan2(aTransBack.getY(), aTransBack.getZ()));
// create trans by rotating unit sphere with angle 90 degrees around Y, then 180-fRot in X.
// Also apply usual scaling and translation
basegfx::B3DHomMatrix aSphereTrans;
aSphereTrans.rotate(0.0, F_PI2, 0.0);
aSphereTrans.rotate(F_PI - fRotInYZ, 0.0, 0.0);
aSphereTrans *= aRotVector;
aSphereTrans.scale(getRadius(), getRadius(), getRadius());
aSphereTrans.translate(aCurr.getX(), aCurr.getY(), aCurr.getZ());
// line start edge, build transformed primitiveVector3D
aResultVector.push_back(
new TransformPrimitive3D(
aSphereTrans,
aNewList));
}
}
// create line segments, build transformed primitiveVector3D
aResultVector.push_back(
new TransformPrimitive3D(
aTubeTrans,
getLineTubeSegments(nSegments, aMaterial)));
if(bNoLineJoin || (!bClosed && bLast))
{
// line end edge
basegfx::B3DHomMatrix aBackCapTrans;
// Mirror (line end) and radius scale
aBackCapTrans.rotate(0.0, F_PI, 0.0);
aBackCapTrans.scale(getRadius(), getRadius(), getRadius());
if(bLineCapSquare && bLast)
{
// correct position when square and prolonged
aBackCapTrans.translate(fForwLen + getRadius(), 0.0, 0.0);
}
else
{
// standard position
aBackCapTrans.translate(fForwLen, 0.0, 0.0);
}
// rotate and translate to destination
aBackCapTrans *= aRotVector;
aBackCapTrans.translate(aCurr.getX(), aCurr.getY(), aCurr.getZ());
// get primitiveVector3D
Primitive3DSequence aSequence;
if(bLineCapRound && bLast)
{
// LineCapRound used
aSequence = getLineCapRoundSegments(nSegments, aMaterial);
}
else
{
// simple closing cap
aSequence = getLineCapSegments(nSegments, aMaterial);
}
aResultVector.push_back(
new TransformPrimitive3D(
aBackCapTrans,
aSequence));
}
}
// prepare next loop step
aLast = aCurr;
aCurr = aNext;
}
}
else
{
// create hairline
PolygonHairlinePrimitive3D* pNew = new PolygonHairlinePrimitive3D(getB3DPolygon(), getBColor());
aResultVector.push_back(pNew);
}
}
// prepare return value
Primitive3DSequence aRetval(aResultVector.size());
for(sal_uInt32 a(0L); a < aResultVector.size(); a++)
{
aRetval[a] = Primitive3DReference(aResultVector[a]);
}
return aRetval;
}
PolygonTubePrimitive3D::PolygonTubePrimitive3D(
const basegfx::B3DPolygon& rPolygon,
const basegfx::BColor& rBColor,
double fRadius, basegfx::B2DLineJoin aLineJoin,
com::sun::star::drawing::LineCap aLineCap,
double fDegreeStepWidth,
double fMiterMinimumAngle)
: PolygonHairlinePrimitive3D(rPolygon, rBColor),
maLast3DDecomposition(),
mfRadius(fRadius),
mfDegreeStepWidth(fDegreeStepWidth),
mfMiterMinimumAngle(fMiterMinimumAngle),
maLineJoin(aLineJoin),
maLineCap(aLineCap)
{
}
bool PolygonTubePrimitive3D::operator==(const BasePrimitive3D& rPrimitive) const
{
if(PolygonHairlinePrimitive3D::operator==(rPrimitive))
{
const PolygonTubePrimitive3D& rCompare = (PolygonTubePrimitive3D&)rPrimitive;
return (getRadius() == rCompare.getRadius()
&& getDegreeStepWidth() == rCompare.getDegreeStepWidth()
&& getMiterMinimumAngle() == rCompare.getMiterMinimumAngle()
&& getLineJoin() == rCompare.getLineJoin()
&& getLineCap() == rCompare.getLineCap());
}
return false;
}
Primitive3DSequence PolygonTubePrimitive3D::get3DDecomposition(const geometry::ViewInformation3D& rViewInformation) const
{
::osl::MutexGuard aGuard( m_aMutex );
if(!getLast3DDecomposition().hasElements())
{
const Primitive3DSequence aNewSequence(impCreate3DDecomposition(rViewInformation));
const_cast< PolygonTubePrimitive3D* >(this)->setLast3DDecomposition(aNewSequence);
}
return getLast3DDecomposition();
}
// provide unique ID
ImplPrimitrive3DIDBlock(PolygonTubePrimitive3D, PRIMITIVE3D_ID_POLYGONTUBEPRIMITIVE3D)
} // end of namespace primitive3d
} // end of namespace drawinglayer
//////////////////////////////////////////////////////////////////////////////
// eof