blob: 128598051cf2bd6b7852d0803d50bc75b599e239 [file] [log] [blame]
/**************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_drawinglayer.hxx"
#include <drawinglayer/primitive2d/svggradientprimitive2d.hxx>
#include <drawinglayer/primitive2d/drawinglayer_primitivetypes2d.hxx>
#include <drawinglayer/primitive2d/polypolygonprimitive2d.hxx>
#include <drawinglayer/primitive2d/unifiedtransparenceprimitive2d.hxx>
#include <drawinglayer/primitive2d/polygonprimitive2d.hxx>
#include <basegfx/matrix/b2dhommatrixtools.hxx>
#include <basegfx/polygon/b2dpolygontools.hxx>
#include <basegfx/polygon/b2dpolygon.hxx>
#include <drawinglayer/primitive2d/transparenceprimitive2d.hxx>
#include <drawinglayer/primitive2d/transformprimitive2d.hxx>
#include <drawinglayer/primitive2d/maskprimitive2d.hxx>
#include <drawinglayer/geometry/viewinformation2d.hxx>
//////////////////////////////////////////////////////////////////////////////
using namespace com::sun::star;
//////////////////////////////////////////////////////////////////////////////
namespace
{
sal_uInt32 calculateStepsForSvgGradient(const basegfx::BColor& rColorA, const basegfx::BColor& rColorB, double fDelta, double fDiscreteUnit)
{
// use color distance, assume to do every color step (full quality)
sal_uInt32 nSteps(basegfx::fround(rColorA.getDistance(rColorB) * 255.0));
if(nSteps)
{
// calc discrete length to change color all 1.5 disctete units (pixels)
const sal_uInt32 nDistSteps(basegfx::fround(fDelta / (fDiscreteUnit * 1.5)));
nSteps = std::min(nSteps, nDistSteps);
}
// roughly cut when too big or too small
nSteps = std::min(nSteps, sal_uInt32(255));
nSteps = std::max(nSteps, sal_uInt32(1));
return nSteps;
}
} // end of anonymous namespace
//////////////////////////////////////////////////////////////////////////////
namespace drawinglayer
{
namespace primitive2d
{
Primitive2DSequence SvgGradientHelper::createSingleGradientEntryFill() const
{
const SvgGradientEntryVector& rEntries = getGradientEntries();
const sal_uInt32 nCount(rEntries.size());
Primitive2DSequence xRetval;
if(nCount)
{
const SvgGradientEntry& rSingleEntry = rEntries[nCount - 1];
const double fOpacity(rSingleEntry.getOpacity());
if(fOpacity > 0.0)
{
Primitive2DReference xRef(
new PolyPolygonColorPrimitive2D(
getPolyPolygon(),
rSingleEntry.getColor()));
if(fOpacity < 1.0)
{
const Primitive2DSequence aContent(&xRef, 1);
xRef = Primitive2DReference(
new UnifiedTransparencePrimitive2D(
aContent,
1.0 - fOpacity));
}
xRetval = Primitive2DSequence(&xRef, 1);
}
}
else
{
OSL_ENSURE(false, "Single gradient entry construction without entry (!)");
}
return xRetval;
}
void SvgGradientHelper::checkPreconditions()
{
mbPreconditionsChecked = true;
const SvgGradientEntryVector& rEntries = getGradientEntries();
if(rEntries.empty())
{
// no fill at all
}
else
{
const sal_uInt32 nCount(rEntries.size());
if(1 == nCount)
{
// fill with single existing color
setSingleEntry();
}
else
{
// sort maGradientEntries when more than one
std::sort(maGradientEntries.begin(), maGradientEntries.end());
// gradient with at least two colors
bool bAllInvisible(true);
for(sal_uInt32 a(0); a < nCount; a++)
{
const SvgGradientEntry& rCandidate = rEntries[a];
if(basegfx::fTools::equalZero(rCandidate.getOpacity()))
{
// invisible
mbFullyOpaque = false;
}
else if(basegfx::fTools::equal(rCandidate.getOpacity(), 1.0))
{
// completely opaque
bAllInvisible = false;
}
else
{
// opacity
bAllInvisible = false;
mbFullyOpaque = false;
}
}
if(bAllInvisible)
{
// all invisible, nothing to do
}
else
{
const basegfx::B2DRange aPolyRange(getPolyPolygon().getB2DRange());
if(aPolyRange.isEmpty())
{
// no range to fill, nothing to do
}
else
{
const double fPolyWidth(aPolyRange.getWidth());
const double fPolyHeight(aPolyRange.getHeight());
if(basegfx::fTools::equalZero(fPolyWidth) || basegfx::fTools::equalZero(fPolyHeight))
{
// no width/height to fill, nothing to do
}
else
{
mbCreatesContent = true;
}
}
}
}
}
}
double SvgGradientHelper::createRun(
Primitive2DVector& rTargetColor,
Primitive2DVector& rTargetOpacity,
double fPos,
double fMax,
const SvgGradientEntryVector& rEntries,
sal_Int32 nOffset) const
{
const sal_uInt32 nCount(rEntries.size());
if(nCount)
{
const SvgGradientEntry& rStart = rEntries[0];
const bool bCreateStartPad(fPos < 0.0 && Spread_pad == getSpreadMethod());
const bool bCreateStartFill(rStart.getOffset() > 0.0);
sal_uInt32 nIndex(0);
if(bCreateStartPad || bCreateStartFill)
{
const SvgGradientEntry aTemp(bCreateStartPad ? fPos : 0.0, rStart.getColor(), rStart.getOpacity());
createAtom(rTargetColor, rTargetOpacity, aTemp, rStart, nOffset);
fPos = rStart.getOffset();
}
while(fPos < 1.0 && nIndex + 1 < nCount)
{
const SvgGradientEntry& rCandidateA = rEntries[nIndex++];
const SvgGradientEntry& rCandidateB = rEntries[nIndex];
createAtom(rTargetColor, rTargetOpacity, rCandidateA, rCandidateB, nOffset);
fPos = rCandidateB.getOffset();
}
const SvgGradientEntry& rEnd = rEntries[nCount - 1];
const bool bCreateEndPad(fPos < fMax && Spread_pad == getSpreadMethod());
const bool bCreateEndFill(rEnd.getOffset() < 1.0);
if(bCreateEndPad || bCreateEndFill)
{
fPos = bCreateEndPad ? fMax : 1.0;
const SvgGradientEntry aTemp(fPos, rEnd.getColor(), rEnd.getOpacity());
createAtom(rTargetColor, rTargetOpacity, rEnd, aTemp, nOffset);
}
}
else
{
OSL_ENSURE(false, "GradientAtom creation without ColorStops (!)");
fPos = fMax;
}
return fPos;
}
Primitive2DSequence SvgGradientHelper::createResult(
const Primitive2DVector& rTargetColor,
const Primitive2DVector& rTargetOpacity,
const basegfx::B2DHomMatrix& rUnitGradientToObject,
bool bInvert) const
{
Primitive2DSequence xRetval;
const Primitive2DSequence aTargetColorEntries(Primitive2DVectorToPrimitive2DSequence(rTargetColor, bInvert));
const Primitive2DSequence aTargetOpacityEntries(Primitive2DVectorToPrimitive2DSequence(rTargetOpacity, bInvert));
if(aTargetColorEntries.hasElements())
{
Primitive2DReference xRefContent;
if(aTargetOpacityEntries.hasElements())
{
const Primitive2DReference xRefOpacity = new TransparencePrimitive2D(
aTargetColorEntries,
aTargetOpacityEntries);
xRefContent = new TransformPrimitive2D(
rUnitGradientToObject,
Primitive2DSequence(&xRefOpacity, 1));
}
else
{
xRefContent = new TransformPrimitive2D(
rUnitGradientToObject,
aTargetColorEntries);
}
xRefContent = new MaskPrimitive2D(
getPolyPolygon(),
Primitive2DSequence(&xRefContent, 1));
xRetval = Primitive2DSequence(&xRefContent, 1);
}
return xRetval;
}
SvgGradientHelper::SvgGradientHelper(
const basegfx::B2DHomMatrix& rGradientTransform,
const basegfx::B2DPolyPolygon& rPolyPolygon,
const SvgGradientEntryVector& rGradientEntries,
const basegfx::B2DPoint& rStart,
bool bUseUnitCoordinates,
SpreadMethod aSpreadMethod)
: maGradientTransform(rGradientTransform),
maPolyPolygon(rPolyPolygon),
maGradientEntries(rGradientEntries),
maStart(rStart),
maSpreadMethod(aSpreadMethod),
mbPreconditionsChecked(false),
mbCreatesContent(false),
mbSingleEntry(false),
mbFullyOpaque(true),
mbUseUnitCoordinates(bUseUnitCoordinates)
{
}
SvgGradientHelper::~SvgGradientHelper()
{
}
bool SvgGradientHelper::operator==(const SvgGradientHelper& rSvgGradientHelper) const
{
const SvgGradientHelper& rCompare = static_cast< const SvgGradientHelper& >(rSvgGradientHelper);
return (getGradientTransform() == rCompare.getGradientTransform()
&& getPolyPolygon() == rCompare.getPolyPolygon()
&& getGradientEntries() == rCompare.getGradientEntries()
&& getStart() == rCompare.getStart()
&& getUseUnitCoordinates() == rCompare.getUseUnitCoordinates()
&& getSpreadMethod() == rCompare.getSpreadMethod());
}
} // end of namespace primitive2d
} // end of namespace drawinglayer
//////////////////////////////////////////////////////////////////////////////
namespace drawinglayer
{
namespace primitive2d
{
void SvgLinearGradientPrimitive2D::checkPreconditions()
{
// call parent
SvgGradientHelper::checkPreconditions();
if(getCreatesContent())
{
// Check Vector
const basegfx::B2DVector aVector(getEnd() - getStart());
if(basegfx::fTools::equalZero(aVector.getX()) && basegfx::fTools::equalZero(aVector.getY()))
{
// fill with single color using last stop color
setSingleEntry();
}
}
}
void SvgLinearGradientPrimitive2D::createAtom(
Primitive2DVector& rTargetColor,
Primitive2DVector& rTargetOpacity,
const SvgGradientEntry& rFrom,
const SvgGradientEntry& rTo,
sal_Int32 nOffset) const
{
// create gradient atom [rFrom.getOffset() .. rTo.getOffset()] with (rFrom.getOffset() > rTo.getOffset())
if(rFrom.getOffset() == rTo.getOffset())
{
OSL_ENSURE(false, "SvgGradient Atom creation with no step width (!)");
}
else
{
rTargetColor.push_back(
new SvgLinearAtomPrimitive2D(
rFrom.getColor(), rFrom.getOffset() + nOffset,
rTo.getColor(), rTo.getOffset() + nOffset));
if(!getFullyOpaque())
{
const double fTransFrom(1.0 - rFrom.getOpacity());
const double fTransTo(1.0 - rTo.getOpacity());
const basegfx::BColor aColorFrom(fTransFrom, fTransFrom, fTransFrom);
const basegfx::BColor aColorTo(fTransTo, fTransTo, fTransTo);
rTargetOpacity.push_back(
new SvgLinearAtomPrimitive2D(
aColorFrom, rFrom.getOffset() + nOffset,
aColorTo, rTo.getOffset() + nOffset));
}
}
}
Primitive2DSequence SvgLinearGradientPrimitive2D::create2DDecomposition(const geometry::ViewInformation2D& /*rViewInformation*/) const
{
Primitive2DSequence xRetval;
if(!getPreconditionsChecked())
{
const_cast< SvgLinearGradientPrimitive2D* >(this)->checkPreconditions();
}
if(getSingleEntry())
{
// fill with last existing color
xRetval = createSingleGradientEntryFill();
}
else if(getCreatesContent())
{
// at least two color stops in range [0.0 .. 1.0], sorted, non-null vector, not completely
// invisible, width and height to fill are not empty
const basegfx::B2DRange aPolyRange(getPolyPolygon().getB2DRange());
const double fPolyWidth(aPolyRange.getWidth());
const double fPolyHeight(aPolyRange.getHeight());
// create ObjectTransform based on polygon range
const basegfx::B2DHomMatrix aObjectTransform(
basegfx::tools::createScaleTranslateB2DHomMatrix(
fPolyWidth, fPolyHeight,
aPolyRange.getMinX(), aPolyRange.getMinY()));
basegfx::B2DHomMatrix aUnitGradientToObject;
if(getUseUnitCoordinates())
{
// interpret in unit coordinate system -> object aspect ratio will scale result
// create unit transform from unit vector [0.0 .. 1.0] along the X-Axis to given
// gradient vector defined by Start,End
const basegfx::B2DVector aVector(getEnd() - getStart());
const double fVectorLength(aVector.getLength());
aUnitGradientToObject.scale(fVectorLength, 1.0);
aUnitGradientToObject.rotate(atan2(aVector.getY(), aVector.getX()));
aUnitGradientToObject.translate(getStart().getX(), getStart().getY());
if(!getGradientTransform().isIdentity())
{
aUnitGradientToObject = getGradientTransform() * aUnitGradientToObject;
}
// create full transform from unit gradient coordinates to object coordinates
// including the SvgGradient transformation
aUnitGradientToObject = aObjectTransform * aUnitGradientToObject;
}
else
{
// interpret in object coordinate system -> object aspect ratio will not scale result
const basegfx::B2DPoint aStart(aObjectTransform * getStart());
const basegfx::B2DPoint aEnd(aObjectTransform * getEnd());
const basegfx::B2DVector aVector(aEnd - aStart);
aUnitGradientToObject.scale(aVector.getLength(), 1.0);
aUnitGradientToObject.rotate(atan2(aVector.getY(), aVector.getX()));
aUnitGradientToObject.translate(aStart.getX(), aStart.getY());
if(!getGradientTransform().isIdentity())
{
aUnitGradientToObject = getGradientTransform() * aUnitGradientToObject;
}
}
// create inverse from it
basegfx::B2DHomMatrix aObjectToUnitGradient(aUnitGradientToObject);
aObjectToUnitGradient.invert();
// back-transform polygon to unit gradient coordinates and get
// UnitRage. This is the range the gradient has to cover
basegfx::B2DPolyPolygon aUnitPoly(getPolyPolygon());
aUnitPoly.transform(aObjectToUnitGradient);
const basegfx::B2DRange aUnitRange(aUnitPoly.getB2DRange());
// prepare result vectors
Primitive2DVector aTargetColor;
Primitive2DVector aTargetOpacity;
if(basegfx::fTools::more(aUnitRange.getWidth(), 0.0))
{
// add a pre-multiply to aUnitGradientToObject to allow
// multiplication of the polygon(xl, 0.0, xr, 1.0)
const basegfx::B2DHomMatrix aPreMultiply(
basegfx::tools::createScaleTranslateB2DHomMatrix(
1.0, aUnitRange.getHeight(), 0.0, aUnitRange.getMinY()));
aUnitGradientToObject = aUnitGradientToObject * aPreMultiply;
// create central run, may also already do all necessary when
// Spread_pad is set as SpreadMethod and/or the range is smaller
double fPos(createRun(aTargetColor, aTargetOpacity, aUnitRange.getMinX(), aUnitRange.getMaxX(), getGradientEntries(), 0));
if(fPos < aUnitRange.getMaxX())
{
// can only happen when SpreadMethod is Spread_reflect or Spread_repeat,
// else the start and end pads are already created and fPos == aUnitRange.getMaxX().
// Its possible to express the repeated linear gradient by adding the
// transformed central run. Crete it this way
Primitive2DSequence aTargetColorEntries(Primitive2DVectorToPrimitive2DSequence(aTargetColor));
Primitive2DSequence aTargetOpacityEntries(Primitive2DVectorToPrimitive2DSequence(aTargetOpacity));
aTargetColor.clear();
aTargetOpacity.clear();
if(aTargetColorEntries.hasElements())
{
// add original central run as group primitive
aTargetColor.push_back(new GroupPrimitive2D(aTargetColorEntries));
if(aTargetOpacityEntries.hasElements())
{
aTargetOpacity.push_back(new GroupPrimitive2D(aTargetOpacityEntries));
}
// add negative runs
fPos = 0.0;
sal_Int32 nOffset(0);
while(fPos > aUnitRange.getMinX())
{
fPos -= 1.0;
nOffset++;
basegfx::B2DHomMatrix aTransform;
const bool bMirror(Spread_reflect == getSpreadMethod() && (nOffset % 2));
if(bMirror)
{
aTransform.scale(-1.0, 1.0);
aTransform.translate(fPos + 1.0, 0.0);
}
else
{
aTransform.translate(fPos, 0.0);
}
aTargetColor.push_back(new TransformPrimitive2D(aTransform, aTargetColorEntries));
if(aTargetOpacityEntries.hasElements())
{
aTargetOpacity.push_back(new TransformPrimitive2D(aTransform, aTargetOpacityEntries));
}
}
// add positive runs
fPos = 1.0;
nOffset = 1;
while(fPos < aUnitRange.getMaxX())
{
basegfx::B2DHomMatrix aTransform;
const bool bMirror(Spread_reflect == getSpreadMethod() && (nOffset % 2));
if(bMirror)
{
aTransform.scale(-1.0, 1.0);
aTransform.translate(fPos + 1.0, 0.0);
}
else
{
aTransform.translate(fPos, 0.0);
}
aTargetColor.push_back(new TransformPrimitive2D(aTransform, aTargetColorEntries));
if(aTargetOpacityEntries.hasElements())
{
aTargetOpacity.push_back(new TransformPrimitive2D(aTransform, aTargetOpacityEntries));
}
fPos += 1.0;
nOffset++;
}
}
}
}
xRetval = createResult(aTargetColor, aTargetOpacity, aUnitGradientToObject);
}
return xRetval;
}
SvgLinearGradientPrimitive2D::SvgLinearGradientPrimitive2D(
const basegfx::B2DHomMatrix& rGradientTransform,
const basegfx::B2DPolyPolygon& rPolyPolygon,
const SvgGradientEntryVector& rGradientEntries,
const basegfx::B2DPoint& rStart,
const basegfx::B2DPoint& rEnd,
bool bUseUnitCoordinates,
SpreadMethod aSpreadMethod)
: BufferedDecompositionPrimitive2D(),
SvgGradientHelper(rGradientTransform, rPolyPolygon, rGradientEntries, rStart, bUseUnitCoordinates, aSpreadMethod),
maEnd(rEnd)
{
}
SvgLinearGradientPrimitive2D::~SvgLinearGradientPrimitive2D()
{
}
bool SvgLinearGradientPrimitive2D::operator==(const BasePrimitive2D& rPrimitive) const
{
const SvgGradientHelper* pSvgGradientHelper = dynamic_cast< const SvgGradientHelper* >(&rPrimitive);
if(pSvgGradientHelper && SvgGradientHelper::operator==(*pSvgGradientHelper))
{
const SvgLinearGradientPrimitive2D& rCompare = static_cast< const SvgLinearGradientPrimitive2D& >(rPrimitive);
return (getEnd() == rCompare.getEnd());
}
return false;
}
basegfx::B2DRange SvgLinearGradientPrimitive2D::getB2DRange(const geometry::ViewInformation2D& /*rViewInformation*/) const
{
// return ObjectRange
return getPolyPolygon().getB2DRange();
}
// provide unique ID
ImplPrimitrive2DIDBlock(SvgLinearGradientPrimitive2D, PRIMITIVE2D_ID_SVGLINEARGRADIENTPRIMITIVE2D)
} // end of namespace primitive2d
} // end of namespace drawinglayer
//////////////////////////////////////////////////////////////////////////////
namespace drawinglayer
{
namespace primitive2d
{
void SvgRadialGradientPrimitive2D::checkPreconditions()
{
// call parent
SvgGradientHelper::checkPreconditions();
if(getCreatesContent())
{
// Check Radius
if(basegfx::fTools::equalZero(getRadius()))
{
// fill with single color using last stop color
setSingleEntry();
}
}
}
void SvgRadialGradientPrimitive2D::createAtom(
Primitive2DVector& rTargetColor,
Primitive2DVector& rTargetOpacity,
const SvgGradientEntry& rFrom,
const SvgGradientEntry& rTo,
sal_Int32 nOffset) const
{
// create gradient atom [rFrom.getOffset() .. rTo.getOffset()] with (rFrom.getOffset() > rTo.getOffset())
if(rFrom.getOffset() == rTo.getOffset())
{
OSL_ENSURE(false, "SvgGradient Atom creation with no step width (!)");
}
else
{
const double fScaleFrom(rFrom.getOffset() + nOffset);
const double fScaleTo(rTo.getOffset() + nOffset);
if(isFocalSet())
{
const basegfx::B2DVector aTranslateFrom(maFocalVector * (maFocalLength - fScaleFrom));
const basegfx::B2DVector aTranslateTo(maFocalVector * (maFocalLength - fScaleTo));
rTargetColor.push_back(
new SvgRadialAtomPrimitive2D(
rFrom.getColor(), fScaleFrom, aTranslateFrom,
rTo.getColor(), fScaleTo, aTranslateTo));
}
else
{
rTargetColor.push_back(
new SvgRadialAtomPrimitive2D(
rFrom.getColor(), fScaleFrom,
rTo.getColor(), fScaleTo));
}
if(!getFullyOpaque())
{
const double fTransFrom(1.0 - rFrom.getOpacity());
const double fTransTo(1.0 - rTo.getOpacity());
const basegfx::BColor aColorFrom(fTransFrom, fTransFrom, fTransFrom);
const basegfx::BColor aColorTo(fTransTo, fTransTo, fTransTo);
if(isFocalSet())
{
const basegfx::B2DVector aTranslateFrom(maFocalVector * (maFocalLength - fScaleFrom));
const basegfx::B2DVector aTranslateTo(maFocalVector * (maFocalLength - fScaleTo));
rTargetOpacity.push_back(
new SvgRadialAtomPrimitive2D(
aColorFrom, fScaleFrom, aTranslateFrom,
aColorTo, fScaleTo, aTranslateTo));
}
else
{
rTargetOpacity.push_back(
new SvgRadialAtomPrimitive2D(
aColorFrom, fScaleFrom,
aColorTo, fScaleTo));
}
}
}
}
const SvgGradientEntryVector& SvgRadialGradientPrimitive2D::getMirroredGradientEntries() const
{
if(maMirroredGradientEntries.empty() && !getGradientEntries().empty())
{
const_cast< SvgRadialGradientPrimitive2D* >(this)->createMirroredGradientEntries();
}
return maMirroredGradientEntries;
}
void SvgRadialGradientPrimitive2D::createMirroredGradientEntries()
{
if(maMirroredGradientEntries.empty() && !getGradientEntries().empty())
{
const sal_uInt32 nCount(getGradientEntries().size());
maMirroredGradientEntries.clear();
maMirroredGradientEntries.reserve(nCount);
for(sal_uInt32 a(0); a < nCount; a++)
{
const SvgGradientEntry& rCandidate = getGradientEntries()[nCount - 1 - a];
maMirroredGradientEntries.push_back(
SvgGradientEntry(
1.0 - rCandidate.getOffset(),
rCandidate.getColor(),
rCandidate.getOpacity()));
}
}
}
Primitive2DSequence SvgRadialGradientPrimitive2D::create2DDecomposition(const geometry::ViewInformation2D& /*rViewInformation*/) const
{
Primitive2DSequence xRetval;
if(!getPreconditionsChecked())
{
const_cast< SvgRadialGradientPrimitive2D* >(this)->checkPreconditions();
}
if(getSingleEntry())
{
// fill with last existing color
xRetval = createSingleGradientEntryFill();
}
else if(getCreatesContent())
{
// at least two color stops in range [0.0 .. 1.0], sorted, non-null vector, not completely
// invisible, width and height to fill are not empty
const basegfx::B2DRange aPolyRange(getPolyPolygon().getB2DRange());
const double fPolyWidth(aPolyRange.getWidth());
const double fPolyHeight(aPolyRange.getHeight());
// create ObjectTransform based on polygon range
const basegfx::B2DHomMatrix aObjectTransform(
basegfx::tools::createScaleTranslateB2DHomMatrix(
fPolyWidth, fPolyHeight,
aPolyRange.getMinX(), aPolyRange.getMinY()));
basegfx::B2DHomMatrix aUnitGradientToObject;
if(getUseUnitCoordinates())
{
// interpret in unit coordinate system -> object aspect ratio will scale result
// create unit transform from unit vector to given linear gradient vector
aUnitGradientToObject.scale(getRadius(), getRadius());
aUnitGradientToObject.translate(getStart().getX(), getStart().getY());
if(!getGradientTransform().isIdentity())
{
aUnitGradientToObject = getGradientTransform() * aUnitGradientToObject;
}
// create full transform from unit gradient coordinates to object coordinates
// including the SvgGradient transformation
aUnitGradientToObject = aObjectTransform * aUnitGradientToObject;
}
else
{
// interpret in object coordinate system -> object aspect ratio will not scale result
// use X-Axis with radius, it was already made relative to object width when coming from
// SVG import
const double fRadius((aObjectTransform * basegfx::B2DVector(getRadius(), 0.0)).getLength());
const basegfx::B2DPoint aStart(aObjectTransform * getStart());
aUnitGradientToObject.scale(fRadius, fRadius);
aUnitGradientToObject.translate(aStart.getX(), aStart.getY());
if(!getGradientTransform().isIdentity())
{
aUnitGradientToObject = getGradientTransform() * aUnitGradientToObject;
}
}
// create inverse from it
basegfx::B2DHomMatrix aObjectToUnitGradient(aUnitGradientToObject);
aObjectToUnitGradient.invert();
// back-transform polygon to unit gradient coordinates and get
// UnitRage. This is the range the gradient has to cover
basegfx::B2DPolyPolygon aUnitPoly(getPolyPolygon());
aUnitPoly.transform(aObjectToUnitGradient);
const basegfx::B2DRange aUnitRange(aUnitPoly.getB2DRange());
// create range which the gradient has to cover to cover the whole given geometry.
// For circle, go from 0.0 to max radius in all directions (the corners)
double fMax(basegfx::B2DVector(aUnitRange.getMinimum()).getLength());
fMax = std::max(fMax, basegfx::B2DVector(aUnitRange.getMaximum()).getLength());
fMax = std::max(fMax, basegfx::B2DVector(aUnitRange.getMinX(), aUnitRange.getMaxY()).getLength());
fMax = std::max(fMax, basegfx::B2DVector(aUnitRange.getMaxX(), aUnitRange.getMinY()).getLength());
// prepare result vectors
Primitive2DVector aTargetColor;
Primitive2DVector aTargetOpacity;
if(0.0 < fMax)
{
// prepare maFocalVector
if(isFocalSet())
{
const_cast< SvgRadialGradientPrimitive2D* >(this)->maFocalLength = fMax;
}
// create central run, may also already do all necessary when
// Spread_pad is set as SpreadMethod and/or the range is smaller
double fPos(createRun(aTargetColor, aTargetOpacity, 0.0, fMax, getGradientEntries(), 0));
if(fPos < fMax)
{
// can only happen when SpreadMethod is Spread_reflect or Spread_repeat,
// else the start and end pads are already created and fPos == fMax.
// For radial there is no way to transform the already created
// central run, it needs to be created from 1.0 to fMax
sal_Int32 nOffset(1);
while(fPos < fMax)
{
const bool bMirror(Spread_reflect == getSpreadMethod() && (nOffset % 2));
if(bMirror)
{
createRun(aTargetColor, aTargetOpacity, 0.0, fMax, getMirroredGradientEntries(), nOffset);
}
else
{
createRun(aTargetColor, aTargetOpacity, 0.0, fMax, getGradientEntries(), nOffset);
}
nOffset++;
fPos += 1.0;
}
}
}
xRetval = createResult(aTargetColor, aTargetOpacity, aUnitGradientToObject, true);
}
return xRetval;
}
SvgRadialGradientPrimitive2D::SvgRadialGradientPrimitive2D(
const basegfx::B2DHomMatrix& rGradientTransform,
const basegfx::B2DPolyPolygon& rPolyPolygon,
const SvgGradientEntryVector& rGradientEntries,
const basegfx::B2DPoint& rStart,
double fRadius,
bool bUseUnitCoordinates,
SpreadMethod aSpreadMethod,
const basegfx::B2DPoint* pFocal)
: BufferedDecompositionPrimitive2D(),
SvgGradientHelper(rGradientTransform, rPolyPolygon, rGradientEntries, rStart, bUseUnitCoordinates, aSpreadMethod),
mfRadius(fRadius),
maFocal(rStart),
maFocalVector(0.0, 0.0),
maFocalLength(0.0),
maMirroredGradientEntries(),
mbFocalSet(false)
{
if(pFocal && !pFocal->equal(getStart()))
{
maFocal = *pFocal;
maFocalVector = maFocal - getStart();
mbFocalSet = true;
}
}
SvgRadialGradientPrimitive2D::~SvgRadialGradientPrimitive2D()
{
}
bool SvgRadialGradientPrimitive2D::operator==(const BasePrimitive2D& rPrimitive) const
{
const SvgGradientHelper* pSvgGradientHelper = dynamic_cast< const SvgGradientHelper* >(&rPrimitive);
if(pSvgGradientHelper && SvgGradientHelper::operator==(*pSvgGradientHelper))
{
const SvgRadialGradientPrimitive2D& rCompare = static_cast< const SvgRadialGradientPrimitive2D& >(rPrimitive);
if(getRadius() == rCompare.getRadius())
{
if(isFocalSet() == rCompare.isFocalSet())
{
if(isFocalSet())
{
return getFocal() == rCompare.getFocal();
}
else
{
return true;
}
}
}
}
return false;
}
basegfx::B2DRange SvgRadialGradientPrimitive2D::getB2DRange(const geometry::ViewInformation2D& /*rViewInformation*/) const
{
// return ObjectRange
return getPolyPolygon().getB2DRange();
}
// provide unique ID
ImplPrimitrive2DIDBlock(SvgRadialGradientPrimitive2D, PRIMITIVE2D_ID_SVGRADIALGRADIENTPRIMITIVE2D)
} // end of namespace primitive2d
} // end of namespace drawinglayer
//////////////////////////////////////////////////////////////////////////////
// SvgLinearAtomPrimitive2D class
namespace drawinglayer
{
namespace primitive2d
{
Primitive2DSequence SvgLinearAtomPrimitive2D::create2DDecomposition(const geometry::ViewInformation2D& /*rViewInformation*/) const
{
Primitive2DSequence xRetval;
const double fDelta(getOffsetB() - getOffsetA());
if(!basegfx::fTools::equalZero(fDelta))
{
// use one discrete unit for overlap (one pixel)
const double fDiscreteUnit(getDiscreteUnit());
// use color distance and discrete lengths to calculate step count
const sal_uInt32 nSteps(calculateStepsForSvgGradient(getColorA(), getColorB(), fDelta, fDiscreteUnit));
// prepare polygon in needed width at start position (with discrete overlap)
const basegfx::B2DPolygon aPolygon(
basegfx::tools::createPolygonFromRect(
basegfx::B2DRange(
getOffsetA() - fDiscreteUnit,
0.0,
getOffsetA() + (fDelta / nSteps) + fDiscreteUnit,
1.0)));
// prepare loop (inside to outside, [0.0 .. 1.0[)
double fUnitScale(0.0);
const double fUnitStep(1.0 / nSteps);
// prepare result set (known size)
xRetval.realloc(nSteps);
for(sal_uInt32 a(0); a < nSteps; a++, fUnitScale += fUnitStep)
{
basegfx::B2DPolygon aNew(aPolygon);
aNew.transform(basegfx::tools::createTranslateB2DHomMatrix(fDelta * fUnitScale, 0.0));
xRetval[a] = new PolyPolygonColorPrimitive2D(
basegfx::B2DPolyPolygon(aNew),
basegfx::interpolate(getColorA(), getColorB(), fUnitScale));
}
}
return xRetval;
}
SvgLinearAtomPrimitive2D::SvgLinearAtomPrimitive2D(
const basegfx::BColor& aColorA, double fOffsetA,
const basegfx::BColor& aColorB, double fOffsetB)
: DiscreteMetricDependentPrimitive2D(),
maColorA(aColorA),
maColorB(aColorB),
mfOffsetA(fOffsetA),
mfOffsetB(fOffsetB)
{
if(mfOffsetA > mfOffsetB)
{
OSL_ENSURE(false, "Wrong offset order (!)");
::std::swap(mfOffsetA, mfOffsetB);
}
}
bool SvgLinearAtomPrimitive2D::operator==(const BasePrimitive2D& rPrimitive) const
{
if(DiscreteMetricDependentPrimitive2D::operator==(rPrimitive))
{
const SvgLinearAtomPrimitive2D& rCompare = static_cast< const SvgLinearAtomPrimitive2D& >(rPrimitive);
return (getColorA() == rCompare.getColorA()
&& getColorB() == rCompare.getColorB()
&& getOffsetA() == rCompare.getOffsetA()
&& getOffsetB() == rCompare.getOffsetB());
}
return false;
}
// provide unique ID
ImplPrimitrive2DIDBlock(SvgLinearAtomPrimitive2D, PRIMITIVE2D_ID_SVGLINEARATOMPRIMITIVE2D)
} // end of namespace primitive2d
} // end of namespace drawinglayer
//////////////////////////////////////////////////////////////////////////////
// SvgRadialAtomPrimitive2D class
namespace drawinglayer
{
namespace primitive2d
{
Primitive2DSequence SvgRadialAtomPrimitive2D::create2DDecomposition(const geometry::ViewInformation2D& /*rViewInformation*/) const
{
Primitive2DSequence xRetval;
const double fDeltaScale(getScaleB() - getScaleA());
if(!basegfx::fTools::equalZero(fDeltaScale))
{
// use one discrete unit for overlap (one pixel)
const double fDiscreteUnit(getDiscreteUnit());
// use color distance and discrete lengths to calculate step count
const sal_uInt32 nSteps(calculateStepsForSvgGradient(getColorA(), getColorB(), fDeltaScale, fDiscreteUnit));
// prepare loop ([0.0 .. 1.0[, full polygons, no polypolygons with holes)
double fUnitScale(0.0);
const double fUnitStep(1.0 / nSteps);
// prepare result set (known size)
xRetval.realloc(nSteps);
for(sal_uInt32 a(0); a < nSteps; a++, fUnitScale += fUnitStep)
{
basegfx::B2DHomMatrix aTransform;
const double fEndScale(getScaleB() - (fDeltaScale * fUnitScale));
if(isTranslateSet())
{
const basegfx::B2DVector aTranslate(
basegfx::interpolate(
getTranslateB(),
getTranslateA(),
fUnitScale));
aTransform = basegfx::tools::createScaleTranslateB2DHomMatrix(
fEndScale,
fEndScale,
aTranslate.getX(),
aTranslate.getY());
}
else
{
aTransform = basegfx::tools::createScaleB2DHomMatrix(
fEndScale,
fEndScale);
}
basegfx::B2DPolygon aNew(basegfx::tools::createPolygonFromUnitCircle());
aNew.transform(aTransform);
xRetval[a] = new PolyPolygonColorPrimitive2D(
basegfx::B2DPolyPolygon(aNew),
basegfx::interpolate(getColorB(), getColorA(), fUnitScale));
}
}
return xRetval;
}
SvgRadialAtomPrimitive2D::SvgRadialAtomPrimitive2D(
const basegfx::BColor& aColorA, double fScaleA, const basegfx::B2DVector& rTranslateA,
const basegfx::BColor& aColorB, double fScaleB, const basegfx::B2DVector& rTranslateB)
: DiscreteMetricDependentPrimitive2D(),
maColorA(aColorA),
maColorB(aColorB),
mfScaleA(fScaleA),
mfScaleB(fScaleB),
mpTranslate(0)
{
// check and evtl. set translations
if(!rTranslateA.equal(rTranslateB))
{
mpTranslate = new VectorPair(rTranslateA, rTranslateB);
}
// scale A and B have to be positive
mfScaleA = ::std::max(mfScaleA, 0.0);
mfScaleB = ::std::max(mfScaleB, 0.0);
// scale B has to be bigger than scale A; swap if different
if(mfScaleA > mfScaleB)
{
OSL_ENSURE(false, "Wrong offset order (!)");
::std::swap(mfScaleA, mfScaleB);
if(mpTranslate)
{
::std::swap(mpTranslate->maTranslateA, mpTranslate->maTranslateB);
}
}
}
SvgRadialAtomPrimitive2D::SvgRadialAtomPrimitive2D(
const basegfx::BColor& aColorA, double fScaleA,
const basegfx::BColor& aColorB, double fScaleB)
: DiscreteMetricDependentPrimitive2D(),
maColorA(aColorA),
maColorB(aColorB),
mfScaleA(fScaleA),
mfScaleB(fScaleB),
mpTranslate(0)
{
// scale A and B have to be positive
mfScaleA = ::std::max(mfScaleA, 0.0);
mfScaleB = ::std::max(mfScaleB, 0.0);
// scale B has to be bigger than scale A; swap if different
if(mfScaleA > mfScaleB)
{
OSL_ENSURE(false, "Wrong offset order (!)");
::std::swap(mfScaleA, mfScaleB);
}
}
SvgRadialAtomPrimitive2D::~SvgRadialAtomPrimitive2D()
{
if(mpTranslate)
{
delete mpTranslate;
mpTranslate = 0;
}
}
bool SvgRadialAtomPrimitive2D::operator==(const BasePrimitive2D& rPrimitive) const
{
if(DiscreteMetricDependentPrimitive2D::operator==(rPrimitive))
{
const SvgRadialAtomPrimitive2D& rCompare = static_cast< const SvgRadialAtomPrimitive2D& >(rPrimitive);
if(getColorA() == rCompare.getColorA()
&& getColorB() == rCompare.getColorB()
&& getScaleA() == rCompare.getScaleA()
&& getScaleB() == rCompare.getScaleB())
{
if(isTranslateSet() && rCompare.isTranslateSet())
{
return (getTranslateA() == rCompare.getTranslateA()
&& getTranslateB() == rCompare.getTranslateB());
}
else if(!isTranslateSet() && !rCompare.isTranslateSet())
{
return true;
}
}
}
return false;
}
// provide unique ID
ImplPrimitrive2DIDBlock(SvgRadialAtomPrimitive2D, PRIMITIVE2D_ID_SVGRADIALATOMPRIMITIVE2D)
} // end of namespace primitive2d
} // end of namespace drawinglayer
//////////////////////////////////////////////////////////////////////////////
// eof