blob: 8d53514072b54a4d2029cfcfe733487562dfdf92 [file] [log] [blame]
/**************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_dbaccess.hxx"
#include "progressmixer.hxx"
/** === begin UNO includes === **/
/** === end UNO includes === **/
#include <osl/diagnose.h>
#include <map>
//........................................................................
namespace dbmm
{
//........................................................................
/** === begin UNO using === **/
/** === end UNO using === **/
#define OVERALL_RANGE 100000
//====================================================================
//= misc types
//====================================================================
struct PhaseData
{
// the weight of the phase, relative to all other phases
PhaseWeight nWeight;
// the "local" range of the phase
sal_uInt32 nRange;
// this is the point in the "overall range" at which this phase starts
sal_uInt32 nGlobalStart;
/** the "global" range of the phase, i.e. its range after weighting with all other
phases
*/
sal_uInt32 nGlobalRange;
PhaseData()
:nWeight(1)
,nRange(100)
,nGlobalStart(0)
,nGlobalRange(100)
{
}
PhaseData( const PhaseWeight _nWeight )
:nWeight( _nWeight )
,nRange(100)
,nGlobalStart(0)
,nGlobalRange(100)
{
}
};
typedef ::std::map< PhaseID, PhaseData > Phases;
//====================================================================
//= ProgressMixer_Data
//====================================================================
struct ProgressMixer_Data
{
Phases aPhases;
Phases::iterator pCurrentPhase;
sal_uInt32 nWeightSum; /// the cached sum of the weights
double nOverallStretch;
IProgressConsumer& rConsumer;
ProgressMixer_Data( IProgressConsumer& _rConsumer )
:aPhases()
,pCurrentPhase( aPhases.end() )
,nWeightSum( 0 )
,nOverallStretch( 0 )
,rConsumer( _rConsumer )
{
}
};
//--------------------------------------------------------------------
namespace
{
#if OSL_DEBUG_LEVEL > 0
//----------------------------------------------------------------
bool lcl_isRunning( const ProgressMixer_Data& _rData )
{
return _rData.pCurrentPhase != _rData.aPhases.end();
}
#endif
//----------------------------------------------------------------
void lcl_ensureInitialized( ProgressMixer_Data& _rData )
{
OSL_PRECOND( _rData.nWeightSum, "lcl_ensureInitialized: we have no phases, this will crash!" );
if ( _rData.nOverallStretch )
return;
_rData.nOverallStretch = 1.0 * OVERALL_RANGE / _rData.nWeightSum;
// tell the single phases their "overall starting point"
PhaseWeight nRunningWeight( 0 );
for ( Phases::iterator phase = _rData.aPhases.begin();
phase != _rData.aPhases.end();
++phase
)
{
phase->second.nGlobalStart = (sal_uInt32)( nRunningWeight * _rData.nOverallStretch );
nRunningWeight += phase->second.nWeight;
sal_uInt32 nNextPhaseStart = (sal_uInt32)( nRunningWeight * _rData.nOverallStretch );
phase->second.nGlobalRange = nNextPhaseStart - phase->second.nGlobalStart;
}
_rData.rConsumer.start( OVERALL_RANGE );
}
}
//====================================================================
//= ProgressMixer
//====================================================================
//--------------------------------------------------------------------
ProgressMixer::ProgressMixer( IProgressConsumer& _rConsumer )
:m_pData( new ProgressMixer_Data( _rConsumer ) )
{
}
//--------------------------------------------------------------------
ProgressMixer::~ProgressMixer()
{
}
//--------------------------------------------------------------------
void ProgressMixer::registerPhase( const PhaseID _nID, const PhaseWeight _nWeight )
{
OSL_PRECOND( !lcl_isRunning( *m_pData ), "ProgressMixer::registerPhase: already running!" );
OSL_ENSURE( m_pData->aPhases.find( _nID ) == m_pData->aPhases.end(),
"ProgressMixer::registerPhase: ID already used!" );
m_pData->aPhases[ _nID ] = PhaseData( _nWeight );
m_pData->nWeightSum += _nWeight;
}
//--------------------------------------------------------------------
void ProgressMixer::startPhase( const PhaseID _nID, const sal_uInt32 _nPhaseRange )
{
OSL_ENSURE( m_pData->aPhases.find( _nID ) != m_pData->aPhases.end(),
"ProgresMixer::startPhase: unknown phase!" );
m_pData->aPhases[ _nID ].nRange = _nPhaseRange;
m_pData->pCurrentPhase = m_pData->aPhases.find( _nID );
}
//--------------------------------------------------------------------
void ProgressMixer::advancePhase( const sal_uInt32 _nPhaseProgress )
{
OSL_PRECOND( lcl_isRunning( *m_pData ), "ProgresMixer::advancePhase: not running!" );
// in case this is the first call, ensure all the ranges/weights are calculated
// correctly
lcl_ensureInitialized( *m_pData );
const PhaseData& rPhase( m_pData->pCurrentPhase->second );
double nLocalProgress = 1.0 * _nPhaseProgress / rPhase.nRange;
sal_uInt32 nOverallProgress = (sal_uInt32)
( rPhase.nGlobalStart + nLocalProgress * rPhase.nGlobalRange );
m_pData->rConsumer.advance( nOverallProgress );
}
//--------------------------------------------------------------------
void ProgressMixer::endPhase()
{
OSL_PRECOND( lcl_isRunning( *m_pData ), "ProgresMixer::endPhase: not running!" );
// in case this is the first call, ensure all the ranges/weights are calculated
// correctly
lcl_ensureInitialized( *m_pData );
// simply assume the phase's complete range is over
advancePhase( m_pData->pCurrentPhase->second.nRange );
// if that's the last phase, this is the "global end", too
Phases::const_iterator pNextPhase( m_pData->pCurrentPhase );
++pNextPhase;
if ( pNextPhase == m_pData->aPhases.end() )
m_pData->rConsumer.end();
}
//........................................................................
} // namespace dbmm
//........................................................................