blob: e0d794a918cae2ffb5a0a98695d3ff5beb5b76ea [file] [log] [blame]
/**************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_chart2.hxx"
#include "ThreeDHelper.hxx"
#include "macros.hxx"
#include "DiagramHelper.hxx"
#include "ChartTypeHelper.hxx"
#include "BaseGFXHelper.hxx"
#include "DataSeriesHelper.hxx"
#include <editeng/unoprnms.hxx>
#include <com/sun/star/beans/XPropertyState.hpp>
#include <com/sun/star/chart2/XDiagram.hpp>
#include <com/sun/star/drawing/LineStyle.hpp>
#include <tools/debug.hxx>
//.............................................................................
namespace chart
{
//.............................................................................
using namespace ::com::sun::star;
using namespace ::com::sun::star::chart2;
using ::com::sun::star::uno::Reference;
using ::com::sun::star::uno::Sequence;
using ::rtl::OUString;
using ::rtl::math::cos;
using ::rtl::math::sin;
using ::rtl::math::tan;
#define FIXED_SIZE_FOR_3D_CHART_VOLUME (10000.0)
namespace
{
bool lcl_isRightAngledAxesSetAndSupported( const Reference< beans::XPropertySet >& xSceneProperties )
{
sal_Bool bRightAngledAxes = sal_False;
if( xSceneProperties.is() )
{
xSceneProperties->getPropertyValue( C2U("RightAngledAxes")) >>= bRightAngledAxes;
if(bRightAngledAxes)
{
uno::Reference< chart2::XDiagram > xDiagram( xSceneProperties, uno::UNO_QUERY );
if( ChartTypeHelper::isSupportingRightAngledAxes(
DiagramHelper::getChartTypeByIndex( xDiagram, 0 ) ) )
{
return true;
}
}
}
return false;
}
void lcl_RotateLightSource( const Reference< beans::XPropertySet >& xSceneProperties
, const OUString& rLightSourceDirection
, const OUString& rLightSourceOn
, const ::basegfx::B3DHomMatrix& rRotationMatrix )
{
if( xSceneProperties.is() )
{
sal_Bool bLightOn = sal_False;
if( xSceneProperties->getPropertyValue( rLightSourceOn ) >>= bLightOn )
{
if( bLightOn )
{
drawing::Direction3D aLight;
if( xSceneProperties->getPropertyValue( rLightSourceDirection ) >>= aLight )
{
::basegfx::B3DVector aLightVector( BaseGFXHelper::Direction3DToB3DVector( aLight ) );
aLightVector = rRotationMatrix*aLightVector;
xSceneProperties->setPropertyValue( rLightSourceDirection
, uno::makeAny( BaseGFXHelper::B3DVectorToDirection3D( aLightVector ) ) );
}
}
}
}
}
void lcl_rotateLights( const ::basegfx::B3DHomMatrix& rLightRottion, const Reference< beans::XPropertySet >& xSceneProperties )
{
if(!xSceneProperties.is())
return;
::basegfx::B3DHomMatrix aLightRottion( rLightRottion );
BaseGFXHelper::ReduceToRotationMatrix( aLightRottion );
lcl_RotateLightSource( xSceneProperties, C2U("D3DSceneLightDirection1"), C2U("D3DSceneLightOn1"), aLightRottion );
lcl_RotateLightSource( xSceneProperties, C2U("D3DSceneLightDirection2"), C2U("D3DSceneLightOn2"), aLightRottion );
lcl_RotateLightSource( xSceneProperties, C2U("D3DSceneLightDirection3"), C2U("D3DSceneLightOn3"), aLightRottion );
lcl_RotateLightSource( xSceneProperties, C2U("D3DSceneLightDirection4"), C2U("D3DSceneLightOn4"), aLightRottion );
lcl_RotateLightSource( xSceneProperties, C2U("D3DSceneLightDirection5"), C2U("D3DSceneLightOn5"), aLightRottion );
lcl_RotateLightSource( xSceneProperties, C2U("D3DSceneLightDirection6"), C2U("D3DSceneLightOn6"), aLightRottion );
lcl_RotateLightSource( xSceneProperties, C2U("D3DSceneLightDirection7"), C2U("D3DSceneLightOn7"), aLightRottion );
lcl_RotateLightSource( xSceneProperties, C2U("D3DSceneLightDirection8"), C2U("D3DSceneLightOn8"), aLightRottion );
}
::basegfx::B3DHomMatrix lcl_getInverseRotationMatrix( const Reference< beans::XPropertySet >& xSceneProperties )
{
::basegfx::B3DHomMatrix aInverseRotation;
double fXAngleRad=0.0;
double fYAngleRad=0.0;
double fZAngleRad=0.0;
ThreeDHelper::getRotationAngleFromDiagram(
xSceneProperties, fXAngleRad, fYAngleRad, fZAngleRad );
aInverseRotation.rotate( 0.0, 0.0, -fZAngleRad );
aInverseRotation.rotate( 0.0, -fYAngleRad, 0.0 );
aInverseRotation.rotate( -fXAngleRad, 0.0, 0.0 );
return aInverseRotation;
}
::basegfx::B3DHomMatrix lcl_getCompleteRotationMatrix( const Reference< beans::XPropertySet >& xSceneProperties )
{
::basegfx::B3DHomMatrix aCompleteRotation;
double fXAngleRad=0.0;
double fYAngleRad=0.0;
double fZAngleRad=0.0;
ThreeDHelper::getRotationAngleFromDiagram(
xSceneProperties, fXAngleRad, fYAngleRad, fZAngleRad );
aCompleteRotation.rotate( fXAngleRad, fYAngleRad, fZAngleRad );
return aCompleteRotation;
}
bool lcl_isEqual( const drawing::Direction3D& rA, const drawing::Direction3D& rB )
{
return ::rtl::math::approxEqual(rA.DirectionX, rB.DirectionX)
&& ::rtl::math::approxEqual(rA.DirectionY, rB.DirectionY)
&& ::rtl::math::approxEqual(rA.DirectionZ, rB.DirectionZ);
}
bool lcl_isLightScheme( const uno::Reference< beans::XPropertySet >& xDiagramProps, bool bRealistic )
{
if(!xDiagramProps.is())
return false;
sal_Bool bIsOn = sal_False;
xDiagramProps->getPropertyValue( C2U( UNO_NAME_3D_SCENE_LIGHTON_2 ) ) >>= bIsOn;
if(!bIsOn)
return false;
uno::Reference< chart2::XDiagram > xDiagram( xDiagramProps, uno::UNO_QUERY );
uno::Reference< chart2::XChartType > xChartType( DiagramHelper::getChartTypeByIndex( xDiagram, 0 ) );
sal_Int32 nColor = 0;
xDiagramProps->getPropertyValue( C2U( UNO_NAME_3D_SCENE_LIGHTCOLOR_2 ) ) >>= nColor;
if( nColor != ::chart::ChartTypeHelper::getDefaultDirectLightColor( !bRealistic, xChartType ) )
return false;
sal_Int32 nAmbientColor = 0;
xDiagramProps->getPropertyValue( C2U( UNO_NAME_3D_SCENE_AMBIENTCOLOR ) ) >>= nAmbientColor;
if( nAmbientColor != ::chart::ChartTypeHelper::getDefaultAmbientLightColor( !bRealistic, xChartType ) )
return false;
drawing::Direction3D aDirection(0,0,0);
xDiagramProps->getPropertyValue( C2U( UNO_NAME_3D_SCENE_LIGHTDIRECTION_2 ) ) >>= aDirection;
drawing::Direction3D aDefaultDirection( bRealistic
? ChartTypeHelper::getDefaultRealisticLightDirection(xChartType)
: ChartTypeHelper::getDefaultSimpleLightDirection(xChartType) );
//rotate default light direction when right angled axes are off but supported
{
sal_Bool bRightAngledAxes = sal_False;
xDiagramProps->getPropertyValue( C2U("RightAngledAxes")) >>= bRightAngledAxes;
if(!bRightAngledAxes)
{
if( ChartTypeHelper::isSupportingRightAngledAxes(
DiagramHelper::getChartTypeByIndex( xDiagram, 0 ) ) )
{
::basegfx::B3DHomMatrix aRotation( lcl_getCompleteRotationMatrix( xDiagramProps ) );
BaseGFXHelper::ReduceToRotationMatrix( aRotation );
::basegfx::B3DVector aLightVector( BaseGFXHelper::Direction3DToB3DVector( aDefaultDirection ) );
aLightVector = aRotation*aLightVector;
aDefaultDirection = BaseGFXHelper::B3DVectorToDirection3D( aLightVector );
}
}
}
return lcl_isEqual( aDirection, aDefaultDirection );
}
bool lcl_isRealisticLightScheme( const uno::Reference< beans::XPropertySet >& xDiagramProps )
{
return lcl_isLightScheme( xDiagramProps, true /*bRealistic*/ );
}
bool lcl_isSimpleLightScheme( const uno::Reference< beans::XPropertySet >& xDiagramProps )
{
return lcl_isLightScheme( xDiagramProps, false /*bRealistic*/ );
}
void lcl_setLightsForScheme( const uno::Reference< beans::XPropertySet >& xDiagramProps, const ThreeDLookScheme& rScheme )
{
if(!xDiagramProps.is())
return;
if( rScheme == ThreeDLookScheme_Unknown)
return;
xDiagramProps->setPropertyValue( C2U( UNO_NAME_3D_SCENE_LIGHTON_2 ), uno::makeAny( sal_True ) );
uno::Reference< chart2::XDiagram > xDiagram( xDiagramProps, uno::UNO_QUERY );
uno::Reference< chart2::XChartType > xChartType( DiagramHelper::getChartTypeByIndex( xDiagram, 0 ) );
uno::Any aADirection( uno::makeAny( rScheme == ThreeDLookScheme_Simple
? ChartTypeHelper::getDefaultSimpleLightDirection(xChartType)
: ChartTypeHelper::getDefaultRealisticLightDirection(xChartType) ) );
xDiagramProps->setPropertyValue( C2U( UNO_NAME_3D_SCENE_LIGHTDIRECTION_2 ), aADirection );
//rotate light direction when right angled axes are off but supported
{
sal_Bool bRightAngledAxes = sal_False;
xDiagramProps->getPropertyValue( C2U("RightAngledAxes")) >>= bRightAngledAxes;
if(!bRightAngledAxes)
{
if( ChartTypeHelper::isSupportingRightAngledAxes( xChartType ) )
{
::basegfx::B3DHomMatrix aRotation( lcl_getCompleteRotationMatrix( xDiagramProps ) );
BaseGFXHelper::ReduceToRotationMatrix( aRotation );
lcl_RotateLightSource( xDiagramProps, C2U("D3DSceneLightDirection2"), C2U("D3DSceneLightOn2"), aRotation );
}
}
}
sal_Int32 nColor = ::chart::ChartTypeHelper::getDefaultDirectLightColor( rScheme==ThreeDLookScheme_Simple, xChartType );
xDiagramProps->setPropertyValue( C2U( UNO_NAME_3D_SCENE_LIGHTCOLOR_2 ), uno::makeAny( nColor ) );
sal_Int32 nAmbientColor = ::chart::ChartTypeHelper::getDefaultAmbientLightColor( rScheme==ThreeDLookScheme_Simple, xChartType );
xDiagramProps->setPropertyValue( C2U( UNO_NAME_3D_SCENE_AMBIENTCOLOR ), uno::makeAny( nAmbientColor ) );
}
bool lcl_isRealisticScheme( drawing::ShadeMode aShadeMode
, sal_Int32 nRoundedEdges
, sal_Int32 nObjectLines )
{
if(aShadeMode!=drawing::ShadeMode_SMOOTH)
return false;
if(nRoundedEdges!=5)
return false;
if(nObjectLines!=0)
return false;
return true;
}
bool lcl_isSimpleScheme( drawing::ShadeMode aShadeMode
, sal_Int32 nRoundedEdges
, sal_Int32 nObjectLines
, const uno::Reference< XDiagram >& xDiagram )
{
if(aShadeMode!=drawing::ShadeMode_FLAT)
return false;
if(nRoundedEdges!=0)
return false;
if(nObjectLines==0)
{
uno::Reference< chart2::XChartType > xChartType( DiagramHelper::getChartTypeByIndex( xDiagram, 0 ) );
return ChartTypeHelper::noBordersForSimpleScheme( xChartType );
}
if(nObjectLines!=1)
return false;
return true;
}
void lcl_setRealisticScheme( drawing::ShadeMode& rShadeMode
, sal_Int32& rnRoundedEdges
, sal_Int32& rnObjectLines )
{
rShadeMode = drawing::ShadeMode_SMOOTH;
rnRoundedEdges = 5;
rnObjectLines = 0;
}
void lcl_setSimpleScheme( drawing::ShadeMode& rShadeMode
, sal_Int32& rnRoundedEdges
, sal_Int32& rnObjectLines
, const uno::Reference< XDiagram >& xDiagram )
{
rShadeMode = drawing::ShadeMode_FLAT;
rnRoundedEdges = 0;
uno::Reference< chart2::XChartType > xChartType( DiagramHelper::getChartTypeByIndex( xDiagram, 0 ) );
rnObjectLines = ChartTypeHelper::noBordersForSimpleScheme( xChartType ) ? 0 : 1;
}
} //end anonymous namespace
drawing::CameraGeometry ThreeDHelper::getDefaultCameraGeometry( bool bPie )
{
// ViewReferencePoint (Point on the View plane)
drawing::Position3D vrp(17634.6218373783, 10271.4823817647, 24594.8639082739);
// ViewPlaneNormal (Normal to the View Plane)
drawing::Direction3D vpn(0.416199821709347, 0.173649045905254, 0.892537795986984);
// ViewUpVector (determines the v-axis direction on the view plane as
// projection of VUP parallel to VPN onto th view pane)
drawing::Direction3D vup(-0.0733876362771618, 0.984807599917971, -0.157379306090273);
if( bPie )
{
vrp = drawing::Position3D( 0.0, 0.0, 87591.2408759124 );//--> 5 percent perspecitve
vpn = drawing::Direction3D( 0.0, 0.0, 1.0 );
vup = drawing::Direction3D( 0.0, 1.0, 0.0 );
}
return drawing::CameraGeometry( vrp, vpn, vup );
}
namespace
{
::basegfx::B3DHomMatrix lcl_getCameraMatrix( const uno::Reference< beans::XPropertySet >& xSceneProperties )
{
drawing::HomogenMatrix aCameraMatrix;
drawing::CameraGeometry aCG( ThreeDHelper::getDefaultCameraGeometry() );
if( xSceneProperties.is() )
xSceneProperties->getPropertyValue( C2U( "D3DCameraGeometry" ) ) >>= aCG;
::basegfx::B3DVector aVPN( BaseGFXHelper::Direction3DToB3DVector( aCG.vpn ) );
::basegfx::B3DVector aVUP( BaseGFXHelper::Direction3DToB3DVector( aCG.vup ) );
//normalize vectors:
aVPN.normalize();
aVUP.normalize();
::basegfx::B3DVector aCross = ::basegfx::cross( aVUP, aVPN );
//first line is VUP x VPN
aCameraMatrix.Line1.Column1 = aCross[0];
aCameraMatrix.Line1.Column2 = aCross[1];
aCameraMatrix.Line1.Column3 = aCross[2];
aCameraMatrix.Line1.Column4 = 0.0;
//second line is VUP
aCameraMatrix.Line2.Column1 = aVUP[0];
aCameraMatrix.Line2.Column2 = aVUP[1];
aCameraMatrix.Line2.Column3 = aVUP[2];
aCameraMatrix.Line2.Column4 = 0.0;
//third line is VPN
aCameraMatrix.Line3.Column1 = aVPN[0];
aCameraMatrix.Line3.Column2 = aVPN[1];
aCameraMatrix.Line3.Column3 = aVPN[2];
aCameraMatrix.Line3.Column4 = 0.0;
//fourth line is 0 0 0 1
aCameraMatrix.Line4.Column1 = 0.0;
aCameraMatrix.Line4.Column2 = 0.0;
aCameraMatrix.Line4.Column3 = 0.0;
aCameraMatrix.Line4.Column4 = 1.0;
return BaseGFXHelper::HomogenMatrixToB3DHomMatrix( aCameraMatrix );
}
double lcl_shiftAngleToIntervalMinusPiToPi( double fAngleRad )
{
//valid range: ]-Pi,Pi]
while( fAngleRad<=-F_PI )
fAngleRad+=(2*F_PI);
while( fAngleRad>F_PI )
fAngleRad-=(2*F_PI);
return fAngleRad;
}
void lcl_shiftAngleToIntervalMinus180To180( sal_Int32& rnAngleDegree )
{
//valid range: ]-180,180]
while( rnAngleDegree<=-180 )
rnAngleDegree+=360;
while( rnAngleDegree>180 )
rnAngleDegree-=360;
}
void lcl_shiftAngleToIntervalZeroTo360( sal_Int32& rnAngleDegree )
{
//valid range: [0,360[
while( rnAngleDegree<0 )
rnAngleDegree+=360;
while( rnAngleDegree>=360 )
rnAngleDegree-=360;
}
void lcl_ensureIntervalMinus1To1( double& rSinOrCos )
{
if (rSinOrCos < -1.0)
rSinOrCos = -1.0;
else if (rSinOrCos > 1.0)
rSinOrCos = 1.0;
}
bool lcl_isSinZero( double fAngleRad )
{
return ::basegfx::fTools::equalZero( sin(fAngleRad), 0.0000001 );
}
bool lcl_isCosZero( double fAngleRad )
{
return ::basegfx::fTools::equalZero( cos(fAngleRad), 0.0000001 );
}
}
void ThreeDHelper::convertElevationRotationDegToXYZAngleRad(
sal_Int32 nElevationDeg, sal_Int32 nRotationDeg,
double& rfXAngleRad, double& rfYAngleRad, double& rfZAngleRad)
{
// for a description of the algorithm see issue 72994
//http://www.openoffice.org/issues/show_bug.cgi?id=72994
//http://www.openoffice.org/nonav/issues/showattachment.cgi/50608/DescriptionCorrected.odt
lcl_shiftAngleToIntervalZeroTo360( nElevationDeg );
lcl_shiftAngleToIntervalZeroTo360( nRotationDeg );
double& x = rfXAngleRad;
double& y = rfYAngleRad;
double& z = rfZAngleRad;
double E = F_PI*nElevationDeg/180; //elevation in Rad
double R = F_PI*nRotationDeg/180; //rotation in Rad
if( (nRotationDeg == 0 || nRotationDeg == 180 )
&& ( nElevationDeg == 90 || nElevationDeg == 270 ) )
{
//sR==0 && cE==0
z = 0.0;
//element 23
double f23 = cos(R)*sin(E);
if(f23>0)
x = F_PI/2;
else
x = -F_PI/2;
y = R;
}
else if( ( nRotationDeg == 90 || nRotationDeg == 270 )
&& ( nElevationDeg == 90 || nElevationDeg == 270 ) )
{
//cR==0 && cE==0
z = F_PI/2;
if( sin(R)>0 )
x = F_PI/2.0;
else
x = -F_PI/2.0;
if( (sin(R)*sin(E))>0 )
y = 0.0;
else
y = F_PI;
}
else if( (nRotationDeg == 0 || nRotationDeg == 180 )
&& ( nElevationDeg == 0 || nElevationDeg == 180 ) )
{
//sR==0 && sE==0
z = 0.0;
y = R;
x = E;
}
else if( ( nRotationDeg == 90 || nRotationDeg == 270 )
&& ( nElevationDeg == 0 || nElevationDeg == 180 ) )
{
//cR==0 && sE==0
z = 0.0;
if( (sin(R)/cos(E))>0 )
y = F_PI/2;
else
y = -F_PI/2;
if( (cos(E))>0 )
x = 0;
else
x = F_PI;
}
else if ( nElevationDeg == 0 || nElevationDeg == 180 )
{
//sR!=0 cR!=0 sE==0
z = 0.0;
x = E;
y = R;
//use element 13 for sign
if((cos(x)*sin(y)*sin(R))<0.0)
y *= -1.0;
}
else if ( nElevationDeg == 90 || nElevationDeg == 270 )
{
//sR!=0 cR!=0 cE==0
//element 12 + 22 --> y=0 or F_PI and x=+-F_PI/2
//-->element 13/23:
z = atan(sin(R)/(cos(R)*sin(E)));
//use element 13 for sign for x
if( (sin(R)*sin(z))>0.0 )
x = F_PI/2;
else
x = -F_PI/2;
//use element 21 for y
if( (sin(R)*sin(E)*sin(z))>0.0)
y = 0.0;
else
y = F_PI;
}
else if ( nRotationDeg == 0 || nRotationDeg == 180 )
{
//sE!=0 cE!=0 sR==0
z = 0.0;
x = E;
y = R;
double f23 = cos(R)*sin(E);
if( (f23 * sin(x)) < 0.0 )
x *= -1.0; //todo ??
}
else if (nRotationDeg == 90 || nRotationDeg == 270)
{
//sE!=0 cE!=0 cR==0
//z = +- F_PI/2;
//x = +- F_PI/2;
z = F_PI/2;
x = F_PI/2;
double sR = sin(R);
if( sR<0.0 )
x *= -1.0; //different signs for x and z
//use element 21:
double cy = sR*sin(E)/sin(z);
lcl_ensureIntervalMinus1To1(cy);
y = acos(cy);
//use element 22 for sign:
if( (sin(x)*sin(y)*sin(z)*cos(E))<0.0)
y *= -1.0;
}
else
{
z = atan(tan(R) * sin(E));
if(cos(z)==0.0)
{
DBG_ERROR("calculation error in ThreeDHelper::convertElevationRotationDegToXYZAngleRad");
return;
}
double cy = cos(R)/cos(z);
lcl_ensureIntervalMinus1To1(cy);
y = acos(cy);
//element 12 in 23
double fDenominator = cos(z)*(1.0-pow(sin(y),2));
if(fDenominator==0.0)
{
DBG_ERROR("calculation error in ThreeDHelper::convertElevationRotationDegToXYZAngleRad");
return;
}
double sx = cos(R)*sin(E)/fDenominator;
lcl_ensureIntervalMinus1To1(sx);
x = asin( sx );
//use element 13 for sign:
double f13a = cos(x)*cos(z)*sin(y);
double f13b = sin(R)-sx*sin(z);
if( (f13b*f13a)<0.0 )
{
//change x or y
//use element 22 for further investigations:
//try
y *= -1;
double f22a = cos(x)*cos(z);
double f22b = cos(E)-(sx*sin(y)*sin(z));
if( (f22a*f22b)<0.0 )
{
y *= -1;
x=(F_PI-x);
}
}
else
{
//change nothing or both
//use element 22 for further investigations:
double f22a = cos(x)*cos(z);
double f22b = cos(E)-(sx*sin(y)*sin(z));
if( (f22a*f22b)<0.0 )
{
y *= -1;
x=(F_PI-x);
}
}
}
}
void ThreeDHelper::convertXYZAngleRadToElevationRotationDeg(
sal_Int32& rnElevationDeg, sal_Int32& rnRotationDeg,
double fXRad, double fYRad, double fZRad)
{
// for a description of the algorithm see issue 72994
//http://www.openoffice.org/issues/show_bug.cgi?id=72994
//http://www.openoffice.org/nonav/issues/showattachment.cgi/50608/DescriptionCorrected.odt
double R = 0.0; //Rotation in Rad
double E = 0.0; //Elevation in Rad
double& x = fXRad;
double& y = fYRad;
double& z = fZRad;
double f11 = cos(y)*cos(z);
if( lcl_isSinZero(y) )
{
//siny == 0
if( lcl_isCosZero(x) )
{
//siny == 0 && cosx == 0
if( lcl_isSinZero(z) )
{
//siny == 0 && cosx == 0 && sinz == 0
//example: x=+-90 y=0oder180 z=0(oder180)
//element 13+11
if( f11 > 0 )
R = 0.0;
else
R = F_PI;
//element 23
double f23 = cos(z)*sin(x) / cos(R);
if( f23 > 0 )
E = F_PI/2.0;
else
E = -F_PI/2.0;
}
else if( lcl_isCosZero(z) )
{
//siny == 0 && cosx == 0 && cosz == 0
//example: x=+-90 y=0oder180 z=+-90
double f13 = sin(x)*sin(z);
//element 13+11
if( f13 > 0 )
R = F_PI/2.0;
else
R = -F_PI/2.0;
//element 21
double f21 = cos(y)*sin(z) / sin(R);
if( f21 > 0 )
E = F_PI/2.0;
else
E = -F_PI/2.0;
}
else
{
//siny == 0 && cosx == 0 && cosz != 0 && sinz != 0
//element 11 && 13
double f13 = sin(x)*sin(z);
R = atan( f13/f11 );
if(f11<0)
R+=F_PI;
//element 23
double f23 = cos(z)*sin(x);
if( f23/cos(R) > 0 )
E = F_PI/2.0;
else
E = -F_PI/2.0;
}
}
else if( lcl_isSinZero(x) )
{
//sinY==0 sinX==0
//element 13+11
if( f11 > 0 )
R = 0.0;
else
R = F_PI;
double f22 = cos(x)*cos(z);
if( f22 > 0 )
E = 0.0;
else
E = F_PI;
}
else if( lcl_isSinZero(z) )
{
//sinY==0 sinZ==0 sinx!=0 cosx!=0
//element 13+11
if( f11 > 0 )
R = 0.0;
else
R = F_PI;
//element 22 && 23
double f22 = cos(x)*cos(z);
double f23 = cos(z)*sin(x);
E = atan( f23/(f22*cos(R)) );
if( (f22*cos(E))<0 )
E+=F_PI;
}
else if( lcl_isCosZero(z) )
{
//sinY == 0 && cosZ == 0 && cosx != 0 && sinx != 0
double f13 = sin(x)*sin(z);
//element 13+11
if( f13 > 0 )
R = F_PI/2.0;
else
R = -F_PI/2.0;
//element 21+22
double f21 = cos(y)*sin(z);
if( f21/sin(R) > 0 )
E = F_PI/2.0;
else
E = -F_PI/2.0;
}
else
{
//sinY == 0 && all other !=0
double f13 = sin(x)*sin(z);
R = atan( f13/f11 );
if( (f11*cos(R))<0.0 )
R+=F_PI;
double f22 = cos(x)*cos(z);
if( !lcl_isCosZero(R) )
E = atan( cos(z)*sin(x) /( f22*cos(R) ) );
else
E = atan( cos(y)*sin(z) /( f22*sin(R) ) );
if( (f22*cos(E))<0 )
E+=F_PI;
}
}
else if( lcl_isCosZero(y) )
{
//cosY==0
double f13 = sin(x)*sin(z)+cos(x)*cos(z)*sin(y);
if( f13 >= 0 )
R = F_PI/2.0;
else
R = -F_PI/2.0;
double f22 = cos(x)*cos(z)+sin(x)*sin(y)*sin(z);
if( f22 >= 0 )
E = 0.0;
else
E = F_PI;
}
else if( lcl_isSinZero(x) )
{
//cosY!=0 sinY!=0 sinX=0
if( lcl_isSinZero(z) )
{
//cosY!=0 sinY!=0 sinX=0 sinZ=0
double f13 = cos(x)*cos(z)*sin(y);
R = atan( f13/f11 );
//R = asin(f13);
if( f11<0 )
R+=F_PI;
double f22 = cos(x)*cos(z);
if( f22>0 )
E = 0.0;
else
E = F_PI;
}
else if( lcl_isCosZero(z) )
{
//cosY!=0 sinY!=0 sinX=0 cosZ=0
R = x;
E = y;//or -y
//use 23 for 'signs'
double f23 = -1.0*cos(x)*sin(y)*sin(z);
if( (f23*cos(R)*sin(E))<0.0 )
{
//change R or E
E = -y;
}
}
else
{
//cosY!=0 sinY!=0 sinX=0 sinZ!=0 cosZ!=0
double f13 = cos(x)*cos(z)*sin(y);
R = atan( f13/f11 );
if( f11<0 )
R+=F_PI;
double f21 = cos(y)*sin(z);
double f22 = cos(x)*cos(z);
E = atan(f21/(f22*sin(R)) );
if( (f22*cos(E))<0.0 )
E+=F_PI;
}
}
else if( lcl_isCosZero(x) )
{
//cosY!=0 sinY!=0 cosX=0
if( lcl_isSinZero(z) )
{
//cosY!=0 sinY!=0 cosX=0 sinZ=0
R=0;//13 -> R=0 or F_PI
if( f11<0.0 )
R=F_PI;
E=F_PI/2;//22 -> E=+-F_PI/2
//use element 11 and 23 for sign
double f23 = cos(z)*sin(x);
if( (f11*f23*sin(E))<0.0 )
E=-F_PI/2.0;
}
else if( lcl_isCosZero(z) )
{
//cosY!=0 sinY!=0 cosX=0 cosZ=0
//element 11 & 13:
if( (sin(x)*sin(z))>0.0 )
R=F_PI/2.0;
else
R=-F_PI/2.0;
//element 22:
E=acos( sin(x)*sin(y)*sin(z));
//use element 21 for sign:
if( (cos(y)*sin(z)*sin(R)*sin(E))<0.0 )
E*=-1.0;
}
else
{
//cosY!=0 sinY!=0 cosX=0 sinZ!=0 cosZ!=0
//element 13/11
R = atan( sin(x)*sin(z)/(cos(y)*cos(z)) );
//use 13 for 'sign'
if( (sin(x)*sin(z))<0.0 )
R += F_PI;
//element 22
E = acos(sin(x)*sin(y)*sin(z) );
//use 21 for sign
if( (cos(y)*sin(z)*sin(R)*sin(E))<0.0 )
E*=-1.0;
}
}
else if( lcl_isSinZero(z) )
{
//cosY!=0 sinY!=0 sinX!=0 cosX!=0 sinZ=0
//element 11
R=y;
//use elenment 13 for sign
if( (cos(x)*cos(z)*sin(y)*sin(R))<0.0 )
R*=-1.0;
//element 22
E = acos( cos(x)*cos(z) );
//use element 23 for sign
if( (cos(z)*sin(x)*cos(R)*sin(E))<0.0 )
E*=-1.0;
}
else if( lcl_isCosZero(z) )
{
//cosY!=0 sinY!=0 sinX!=0 cosX!=0 cosZ=0
//element 21/23
R=atan(-cos(y)/(cos(x)*sin(y)));
//use element 13 for 'sign'
if( (sin(x)*sin(z)*sin(R))<0.0 )
R+=F_PI;
//element 21/22
E=atan( cos(y)*sin(z)/(sin(R)*sin(x)*sin(y)*sin(z)) );
//use element 23 for 'sign'
if( (-cos(x)*sin(y)*sin(z)*cos(R)*sin(E))<0.0 )
E+=F_PI;
}
else
{
//cosY!=0 sinY!=0 sinX!=0 cosX!=0 sinZ!=0 cosZ!=0
//13/11:
double f13 = sin(x)*sin(z)+cos(x)*cos(z)*sin(y);
R = atan( f13/ f11 );
if(f11<0.0)
R+=F_PI;
double f22 = cos(x)*cos(z)+sin(x)*sin(y)*sin(z);
double f23 = cos(x)*sin(y)*sin(z)-cos(z)*sin(x);
//23/22:
E = atan( -1.0*f23/(f22*cos(R)) );
if(f22<0.0)
E+=F_PI;
}
rnElevationDeg = ::basegfx::fround( BaseGFXHelper::Rad2Deg( E ) );
rnRotationDeg = ::basegfx::fround( BaseGFXHelper::Rad2Deg( R ) );
}
double ThreeDHelper::getValueClippedToRange( double fAngle, const double& fPositivLimit )
{
if( fAngle<-1*fPositivLimit )
fAngle=-1*fPositivLimit;
else if( fAngle>fPositivLimit )
fAngle=fPositivLimit;
return fAngle;
}
double ThreeDHelper::getXDegreeAngleLimitForRightAngledAxes()
{
return 90.0;
}
double ThreeDHelper::getYDegreeAngleLimitForRightAngledAxes()
{
return 45.0;
}
void ThreeDHelper::adaptRadAnglesForRightAngledAxes( double& rfXAngleRad, double& rfYAngleRad )
{
rfXAngleRad = ThreeDHelper::getValueClippedToRange(rfXAngleRad, BaseGFXHelper::Deg2Rad(ThreeDHelper::getXDegreeAngleLimitForRightAngledAxes()) );
rfYAngleRad = ThreeDHelper::getValueClippedToRange(rfYAngleRad, BaseGFXHelper::Deg2Rad(ThreeDHelper::getYDegreeAngleLimitForRightAngledAxes()) );
}
void ThreeDHelper::getRotationAngleFromDiagram(
const Reference< beans::XPropertySet >& xSceneProperties, double& rfXAngleRad, double& rfYAngleRad, double& rfZAngleRad )
{
//takes the camera and the transformation matrix into account
rfXAngleRad = rfYAngleRad = rfZAngleRad = 0.0;
if( !xSceneProperties.is() )
return;
//get camera rotation
::basegfx::B3DHomMatrix aFixCameraRotationMatrix( lcl_getCameraMatrix( xSceneProperties ) );
BaseGFXHelper::ReduceToRotationMatrix( aFixCameraRotationMatrix );
//get scene rotation
::basegfx::B3DHomMatrix aSceneRotation;
{
drawing::HomogenMatrix aHomMatrix;
if( xSceneProperties->getPropertyValue( C2U("D3DTransformMatrix")) >>= aHomMatrix )
{
aSceneRotation = BaseGFXHelper::HomogenMatrixToB3DHomMatrix( aHomMatrix );
BaseGFXHelper::ReduceToRotationMatrix( aSceneRotation );
}
}
::basegfx::B3DHomMatrix aResultRotation = aFixCameraRotationMatrix * aSceneRotation;
::basegfx::B3DTuple aRotation( BaseGFXHelper::GetRotationFromMatrix( aResultRotation ) );
rfXAngleRad = lcl_shiftAngleToIntervalMinusPiToPi(aRotation.getX());
rfYAngleRad = lcl_shiftAngleToIntervalMinusPiToPi(aRotation.getY());
rfZAngleRad = lcl_shiftAngleToIntervalMinusPiToPi(aRotation.getZ());
if(rfZAngleRad<(-F_PI/2) || rfZAngleRad>(F_PI/2))
{
rfZAngleRad-=F_PI;
rfXAngleRad-=F_PI;
rfYAngleRad=(F_PI-rfYAngleRad);
rfXAngleRad = lcl_shiftAngleToIntervalMinusPiToPi(rfXAngleRad);
rfYAngleRad = lcl_shiftAngleToIntervalMinusPiToPi(rfYAngleRad);
rfZAngleRad = lcl_shiftAngleToIntervalMinusPiToPi(rfZAngleRad);
}
}
void ThreeDHelper::switchRightAngledAxes( const Reference< beans::XPropertySet >& xSceneProperties, sal_Bool bRightAngledAxes, bool bRotateLights )
{
try
{
if( xSceneProperties.is() )
{
sal_Bool bOldRightAngledAxes = sal_False;
xSceneProperties->getPropertyValue( C2U("RightAngledAxes")) >>= bOldRightAngledAxes;
if( bOldRightAngledAxes!=bRightAngledAxes)
{
xSceneProperties->setPropertyValue( C2U("RightAngledAxes"), uno::makeAny( bRightAngledAxes ));
if( bRotateLights )
{
if(bRightAngledAxes)
{
::basegfx::B3DHomMatrix aInverseRotation( lcl_getInverseRotationMatrix( xSceneProperties ) );
lcl_rotateLights( aInverseRotation, xSceneProperties );
}
else
{
::basegfx::B3DHomMatrix aCompleteRotation( lcl_getCompleteRotationMatrix( xSceneProperties ) );
lcl_rotateLights( aCompleteRotation, xSceneProperties );
}
}
}
}
}
catch( const uno::Exception & ex )
{
ASSERT_EXCEPTION( ex );
}
}
void ThreeDHelper::setRotationAngleToDiagram(
const Reference< beans::XPropertySet >& xSceneProperties
, double fXAngleRad, double fYAngleRad, double fZAngleRad )
{
//the rotation of the camera is not touched but taken into account
//the rotation difference is applied to the transformation matrix
//the light sources will be adapted also
if( !xSceneProperties.is() )
return;
try
{
//remind old rotation for adaption of light directions
::basegfx::B3DHomMatrix aInverseOldRotation( lcl_getInverseRotationMatrix( xSceneProperties ) );
::basegfx::B3DHomMatrix aInverseCameraRotation;
{
::basegfx::B3DTuple aR( BaseGFXHelper::GetRotationFromMatrix(
lcl_getCameraMatrix( xSceneProperties ) ) );
aInverseCameraRotation.rotate( 0.0, 0.0, -aR.getZ() );
aInverseCameraRotation.rotate( 0.0, -aR.getY(), 0.0 );
aInverseCameraRotation.rotate( -aR.getX(), 0.0, 0.0 );
}
::basegfx::B3DHomMatrix aCumulatedRotation;
aCumulatedRotation.rotate( fXAngleRad, fYAngleRad, fZAngleRad );
//calculate new scene matrix
::basegfx::B3DHomMatrix aSceneRotation = aInverseCameraRotation*aCumulatedRotation;
BaseGFXHelper::ReduceToRotationMatrix( aSceneRotation );
//set new rotation to transformation matrix
xSceneProperties->setPropertyValue(
C2U("D3DTransformMatrix"), uno::makeAny( BaseGFXHelper::B3DHomMatrixToHomogenMatrix( aSceneRotation )));
//rotate lights if RightAngledAxes are not set or not supported
sal_Bool bRightAngledAxes = sal_False;
xSceneProperties->getPropertyValue( C2U("RightAngledAxes")) >>= bRightAngledAxes;
uno::Reference< chart2::XDiagram > xDiagram( xSceneProperties, uno::UNO_QUERY );
if(!bRightAngledAxes || !ChartTypeHelper::isSupportingRightAngledAxes(
DiagramHelper::getChartTypeByIndex( xDiagram, 0 ) ) )
{
::basegfx::B3DHomMatrix aNewRotation;
aNewRotation.rotate( fXAngleRad, fYAngleRad, fZAngleRad );
lcl_rotateLights( aNewRotation*aInverseOldRotation, xSceneProperties );
}
}
catch( const uno::Exception & ex )
{
ASSERT_EXCEPTION( ex );
}
}
void ThreeDHelper::getRotationFromDiagram( const uno::Reference< beans::XPropertySet >& xSceneProperties
, sal_Int32& rnHorizontalAngleDegree, sal_Int32& rnVerticalAngleDegree )
{
double fXAngle, fYAngle, fZAngle;
ThreeDHelper::getRotationAngleFromDiagram( xSceneProperties, fXAngle, fYAngle, fZAngle );
if( !lcl_isRightAngledAxesSetAndSupported( xSceneProperties ) )
{
ThreeDHelper::convertXYZAngleRadToElevationRotationDeg(
rnHorizontalAngleDegree, rnVerticalAngleDegree, fXAngle, fYAngle, fZAngle);
rnVerticalAngleDegree*=-1;
}
else
{
fXAngle = BaseGFXHelper::Rad2Deg( fXAngle );
fYAngle = BaseGFXHelper::Rad2Deg( fYAngle );
fZAngle = BaseGFXHelper::Rad2Deg( fZAngle );
rnHorizontalAngleDegree = ::basegfx::fround(fXAngle);
rnVerticalAngleDegree = ::basegfx::fround(-1.0*fYAngle);
//nZRotation = ::basegfx::fround(-1.0*fZAngle);
}
lcl_shiftAngleToIntervalMinus180To180( rnHorizontalAngleDegree );
lcl_shiftAngleToIntervalMinus180To180( rnVerticalAngleDegree );
}
void ThreeDHelper::setRotationToDiagram( const uno::Reference< beans::XPropertySet >& xSceneProperties
, sal_Int32 nHorizontalAngleDegree, sal_Int32 nVerticalYAngleDegree )
{
//todo: x and y is not equal to horz and vert in case of RightAngledAxes==false
double fXAngle = BaseGFXHelper::Deg2Rad( nHorizontalAngleDegree );
double fYAngle = BaseGFXHelper::Deg2Rad( -1*nVerticalYAngleDegree );
double fZAngle = 0.0;
if( !lcl_isRightAngledAxesSetAndSupported( xSceneProperties ) )
ThreeDHelper::convertElevationRotationDegToXYZAngleRad(
nHorizontalAngleDegree, -1*nVerticalYAngleDegree, fXAngle, fYAngle, fZAngle );
ThreeDHelper::setRotationAngleToDiagram( xSceneProperties, fXAngle, fYAngle, fZAngle );
}
void ThreeDHelper::getCameraDistanceRange( double& rfMinimumDistance, double& rfMaximumDistance )
{
rfMinimumDistance = 3.0/4.0*FIXED_SIZE_FOR_3D_CHART_VOLUME;//empiric value
rfMaximumDistance = 20.0*FIXED_SIZE_FOR_3D_CHART_VOLUME;//empiric value
}
void ThreeDHelper::ensureCameraDistanceRange( double& rfCameraDistance )
{
double fMin, fMax;
getCameraDistanceRange( fMin, fMax );
if( rfCameraDistance < fMin )
rfCameraDistance = fMin;
if( rfCameraDistance > fMax )
rfCameraDistance = fMax;
}
double ThreeDHelper::getCameraDistance(
const Reference< beans::XPropertySet >& xSceneProperties )
{
double fCameraDistance = FIXED_SIZE_FOR_3D_CHART_VOLUME;
if( !xSceneProperties.is() )
return fCameraDistance;
try
{
drawing::CameraGeometry aCG( ThreeDHelper::getDefaultCameraGeometry() );
xSceneProperties->getPropertyValue( C2U( "D3DCameraGeometry" ) ) >>= aCG;
::basegfx::B3DVector aVRP( BaseGFXHelper::Position3DToB3DVector( aCG.vrp ) );
fCameraDistance = aVRP.getLength();
ensureCameraDistanceRange( fCameraDistance );
}
catch( const uno::Exception & ex )
{
ASSERT_EXCEPTION( ex );
}
return fCameraDistance;
}
void ThreeDHelper::setCameraDistance(
const Reference< beans::XPropertySet >& xSceneProperties, double fCameraDistance )
{
if( !xSceneProperties.is() )
return;
try
{
if( fCameraDistance <= 0 )
fCameraDistance = FIXED_SIZE_FOR_3D_CHART_VOLUME;
drawing::CameraGeometry aCG( ThreeDHelper::getDefaultCameraGeometry() );
xSceneProperties->getPropertyValue( C2U( "D3DCameraGeometry" ) ) >>= aCG;
::basegfx::B3DVector aVRP( BaseGFXHelper::Position3DToB3DVector( aCG.vrp ) );
if( ::basegfx::fTools::equalZero( aVRP.getLength() ) )
aVRP = ::basegfx::B3DVector(0,0,1);
aVRP.setLength(fCameraDistance);
aCG.vrp = BaseGFXHelper::B3DVectorToPosition3D( aVRP );
xSceneProperties->setPropertyValue( C2U("D3DCameraGeometry"), uno::makeAny( aCG ));
}
catch( const uno::Exception & ex )
{
ASSERT_EXCEPTION( ex );
}
}
double ThreeDHelper::CameraDistanceToPerspective( double fCameraDistance )
{
double fRet = fCameraDistance;
double fMin, fMax;
ThreeDHelper::getCameraDistanceRange( fMin, fMax );
//fMax <-> 0; fMin <->100
//a/x + b = y
double a = 100.0*fMax*fMin/(fMax-fMin);
double b = -a/fMax;
fRet = a/fCameraDistance + b;
return fRet;
}
double ThreeDHelper::PerspectiveToCameraDistance( double fPerspective )
{
double fRet = fPerspective;
double fMin, fMax;
ThreeDHelper::getCameraDistanceRange( fMin, fMax );
//fMax <-> 0; fMin <->100
//a/x + b = y
double a = 100.0*fMax*fMin/(fMax-fMin);
double b = -a/fMax;
fRet = a/(fPerspective - b);
return fRet;
}
ThreeDLookScheme ThreeDHelper::detectScheme( const uno::Reference< XDiagram >& xDiagram )
{
ThreeDLookScheme aScheme = ThreeDLookScheme_Unknown;
sal_Int32 nRoundedEdges;
sal_Int32 nObjectLines;
ThreeDHelper::getRoundedEdgesAndObjectLines( xDiagram, nRoundedEdges, nObjectLines );
//get shade mode and light settings:
drawing::ShadeMode aShadeMode( drawing::ShadeMode_SMOOTH );
uno::Reference< beans::XPropertySet > xDiagramProps( xDiagram, uno::UNO_QUERY );
try
{
if( xDiagramProps.is() )
xDiagramProps->getPropertyValue( C2U( "D3DSceneShadeMode" ) )>>= aShadeMode;
}
catch( uno::Exception & ex )
{
ASSERT_EXCEPTION( ex );
}
if( lcl_isSimpleScheme( aShadeMode, nRoundedEdges, nObjectLines, xDiagram ) )
{
if( lcl_isSimpleLightScheme(xDiagramProps) )
aScheme = ThreeDLookScheme_Simple;
}
else if( lcl_isRealisticScheme( aShadeMode, nRoundedEdges, nObjectLines ) )
{
if( lcl_isRealisticLightScheme(xDiagramProps) )
aScheme = ThreeDLookScheme_Realistic;
}
return aScheme;
}
void ThreeDHelper::setScheme( const uno::Reference< XDiagram >& xDiagram, ThreeDLookScheme aScheme )
{
if( aScheme == ThreeDLookScheme_Unknown )
return;
drawing::ShadeMode aShadeMode;
sal_Int32 nRoundedEdges;
sal_Int32 nObjectLines;
if( aScheme == ThreeDLookScheme_Simple )
lcl_setSimpleScheme(aShadeMode,nRoundedEdges,nObjectLines,xDiagram);
else
lcl_setRealisticScheme(aShadeMode,nRoundedEdges,nObjectLines);
try
{
ThreeDHelper::setRoundedEdgesAndObjectLines( xDiagram, nRoundedEdges, nObjectLines );
uno::Reference< beans::XPropertySet > xProp( xDiagram, uno::UNO_QUERY );
if( xProp.is() )
{
drawing::ShadeMode aOldShadeMode;
if( ! ( (xProp->getPropertyValue( C2U( "D3DSceneShadeMode" ) )>>=aOldShadeMode) &&
aOldShadeMode == aShadeMode ))
{
xProp->setPropertyValue( C2U( "D3DSceneShadeMode" ), uno::makeAny( aShadeMode ));
}
}
lcl_setLightsForScheme( xProp, aScheme );
}
catch( uno::Exception & ex )
{
ASSERT_EXCEPTION( ex );
}
}
void ThreeDHelper::set3DSettingsToDefault( const uno::Reference< beans::XPropertySet >& xSceneProperties )
{
Reference< beans::XPropertyState > xState( xSceneProperties, uno::UNO_QUERY );
if(xState.is())
{
xState->setPropertyToDefault( C2U("D3DSceneDistance"));
xState->setPropertyToDefault( C2U("D3DSceneFocalLength"));
}
ThreeDHelper::setDefaultRotation( xSceneProperties );
ThreeDHelper::setDefaultIllumination( xSceneProperties );
}
void ThreeDHelper::setDefaultRotation( const uno::Reference< beans::XPropertySet >& xSceneProperties, bool bPieOrDonut )
{
if( !xSceneProperties.is() )
return;
drawing::CameraGeometry aCameraGeo( ThreeDHelper::getDefaultCameraGeometry( bPieOrDonut ) );
xSceneProperties->setPropertyValue( C2U("D3DCameraGeometry"), uno::makeAny( aCameraGeo ));
::basegfx::B3DHomMatrix aSceneRotation;
if( bPieOrDonut )
aSceneRotation.rotate( -F_PI/3.0, 0, 0 );
xSceneProperties->setPropertyValue( C2U("D3DTransformMatrix"),
uno::makeAny( BaseGFXHelper::B3DHomMatrixToHomogenMatrix( aSceneRotation )));
}
void ThreeDHelper::setDefaultRotation( const uno::Reference< beans::XPropertySet >& xSceneProperties )
{
bool bPieOrDonut( DiagramHelper::isPieOrDonutChart( uno::Reference< XDiagram >(xSceneProperties, uno::UNO_QUERY) ) );
ThreeDHelper::setDefaultRotation( xSceneProperties, bPieOrDonut );
}
void ThreeDHelper::setDefaultIllumination( const uno::Reference< beans::XPropertySet >& xSceneProperties )
{
if( !xSceneProperties.is() )
return;
drawing::ShadeMode aShadeMode( drawing::ShadeMode_SMOOTH );
try
{
xSceneProperties->getPropertyValue( C2U( "D3DSceneShadeMode" ) )>>= aShadeMode;
xSceneProperties->setPropertyValue( C2U( UNO_NAME_3D_SCENE_LIGHTON_1 ), uno::makeAny( sal_False ) );
xSceneProperties->setPropertyValue( C2U( UNO_NAME_3D_SCENE_LIGHTON_3 ), uno::makeAny( sal_False ) );
xSceneProperties->setPropertyValue( C2U( UNO_NAME_3D_SCENE_LIGHTON_4 ), uno::makeAny( sal_False ) );
xSceneProperties->setPropertyValue( C2U( UNO_NAME_3D_SCENE_LIGHTON_5 ), uno::makeAny( sal_False ) );
xSceneProperties->setPropertyValue( C2U( UNO_NAME_3D_SCENE_LIGHTON_6 ), uno::makeAny( sal_False ) );
xSceneProperties->setPropertyValue( C2U( UNO_NAME_3D_SCENE_LIGHTON_7 ), uno::makeAny( sal_False ) );
xSceneProperties->setPropertyValue( C2U( UNO_NAME_3D_SCENE_LIGHTON_8 ), uno::makeAny( sal_False ) );
}
catch( uno::Exception & ex )
{
ASSERT_EXCEPTION( ex );
}
ThreeDLookScheme aScheme = (drawing::ShadeMode_FLAT==aShadeMode) ? ThreeDLookScheme_Simple : ThreeDLookScheme_Realistic;
lcl_setLightsForScheme( xSceneProperties, aScheme );
}
void ThreeDHelper::getRoundedEdgesAndObjectLines(
const uno::Reference< XDiagram > & xDiagram
, sal_Int32& rnRoundedEdges, sal_Int32& rnObjectLines )
{
rnRoundedEdges = -1;
rnObjectLines = -1;
try
{
bool bDifferentRoundedEdges = false;
bool bDifferentObjectLines = false;
drawing::LineStyle aLineStyle( drawing::LineStyle_SOLID );
::std::vector< uno::Reference< XDataSeries > > aSeriesList(
DiagramHelper::getDataSeriesFromDiagram( xDiagram ) );
sal_Int32 nSeriesCount = static_cast<sal_Int32>( aSeriesList.size() );
rtl::OUString aPercentDiagonalPropertyName( C2U( "PercentDiagonal" ) );
rtl::OUString aBorderStylePropertyName( C2U( "BorderStyle" ) );
for( sal_Int32 nS = 0; nS < nSeriesCount; ++nS )
{
uno::Reference< XDataSeries > xSeries( aSeriesList[nS] );
uno::Reference< beans::XPropertySet > xProp( xSeries, uno::UNO_QUERY );
if(!nS)
{
rnRoundedEdges = 0;
try
{
sal_Int16 nPercentDiagonal = 0;
xProp->getPropertyValue( aPercentDiagonalPropertyName ) >>= nPercentDiagonal;
rnRoundedEdges = static_cast< sal_Int32 >( nPercentDiagonal );
if( DataSeriesHelper::hasAttributedDataPointDifferentValue( xSeries
, aPercentDiagonalPropertyName, uno::makeAny(nPercentDiagonal) ) )
bDifferentRoundedEdges = true;
}
catch( uno::Exception& e )
{
ASSERT_EXCEPTION( e );
bDifferentRoundedEdges = true;
}
try
{
xProp->getPropertyValue( aBorderStylePropertyName ) >>= aLineStyle;
if( DataSeriesHelper::hasAttributedDataPointDifferentValue( xSeries
, aBorderStylePropertyName, uno::makeAny(aLineStyle) ) )
bDifferentObjectLines = true;
}
catch( uno::Exception& e )
{
ASSERT_EXCEPTION( e );
bDifferentObjectLines = true;
}
}
else
{
if( !bDifferentRoundedEdges )
{
sal_Int16 nPercentDiagonal = 0;
xProp->getPropertyValue( aPercentDiagonalPropertyName ) >>= nPercentDiagonal;
sal_Int32 nCurrentRoundedEdges = static_cast< sal_Int32 >( nPercentDiagonal );
if(nCurrentRoundedEdges!=rnRoundedEdges
|| DataSeriesHelper::hasAttributedDataPointDifferentValue( xSeries
, aPercentDiagonalPropertyName, uno::makeAny( static_cast< sal_Int16 >(rnRoundedEdges) ) ) )
{
bDifferentRoundedEdges = true;
nCurrentRoundedEdges = -1;
}
}
if( !bDifferentObjectLines )
{
drawing::LineStyle aCurrentLineStyle;
xProp->getPropertyValue( aBorderStylePropertyName ) >>= aCurrentLineStyle;
if(aCurrentLineStyle!=aLineStyle
|| DataSeriesHelper::hasAttributedDataPointDifferentValue( xSeries
, aBorderStylePropertyName, uno::makeAny(aLineStyle) ) )
bDifferentObjectLines = true;
}
}
if( bDifferentRoundedEdges && bDifferentObjectLines )
break;
}
//set rnObjectLines
rnObjectLines = 0;
if( bDifferentObjectLines )
rnObjectLines = -1;
else if( aLineStyle == drawing::LineStyle_SOLID )
rnObjectLines = 1;
}
catch( uno::Exception& e )
{
ASSERT_EXCEPTION( e );
}
}
void ThreeDHelper::setRoundedEdgesAndObjectLines(
const uno::Reference< XDiagram > & xDiagram
, sal_Int32 nRoundedEdges, sal_Int32 nObjectLines )
{
if( (nRoundedEdges<0||nRoundedEdges>100) && nObjectLines!=0 && nObjectLines!=1 )
return;
drawing::LineStyle aLineStyle( drawing::LineStyle_NONE );
if(nObjectLines==1)
aLineStyle = drawing::LineStyle_SOLID;
uno::Any aALineStyle( uno::makeAny(aLineStyle));
uno::Any aARoundedEdges( uno::makeAny( static_cast< sal_Int16 >( nRoundedEdges )));
::std::vector< uno::Reference< XDataSeries > > aSeriesList(
DiagramHelper::getDataSeriesFromDiagram( xDiagram ) );
sal_Int32 nSeriesCount = static_cast<sal_Int32>( aSeriesList.size() );
for( sal_Int32 nS = 0; nS < nSeriesCount; ++nS )
{
uno::Reference< XDataSeries > xSeries( aSeriesList[nS] );
if( nRoundedEdges>=0 && nRoundedEdges<=100 )
DataSeriesHelper::setPropertyAlsoToAllAttributedDataPoints( xSeries, C2U( "PercentDiagonal" ), aARoundedEdges );
if( nObjectLines==0 || nObjectLines==1 )
DataSeriesHelper::setPropertyAlsoToAllAttributedDataPoints( xSeries, C2U( "BorderStyle" ), aALineStyle );
}
}
CuboidPlanePosition ThreeDHelper::getAutomaticCuboidPlanePositionForStandardLeftWall( const Reference< beans::XPropertySet >& xSceneProperties )
{
CuboidPlanePosition eRet(CuboidPlanePosition_Left);
double fXAngleRad=0.0; double fYAngleRad=0.0; double fZAngleRad=0.0;
ThreeDHelper::getRotationAngleFromDiagram( xSceneProperties, fXAngleRad, fYAngleRad, fZAngleRad );
if( lcl_isRightAngledAxesSetAndSupported( xSceneProperties ) )
{
ThreeDHelper::adaptRadAnglesForRightAngledAxes( fXAngleRad, fYAngleRad );
fZAngleRad=0.0;
}
if( sin(fYAngleRad)>0.0 )
eRet = CuboidPlanePosition_Right;
return eRet;
}
CuboidPlanePosition ThreeDHelper::getAutomaticCuboidPlanePositionForStandardBackWall( const Reference< beans::XPropertySet >& xSceneProperties )
{
CuboidPlanePosition eRet(CuboidPlanePosition_Back);
double fXAngleRad=0.0; double fYAngleRad=0.0; double fZAngleRad=0.0;
ThreeDHelper::getRotationAngleFromDiagram( xSceneProperties, fXAngleRad, fYAngleRad, fZAngleRad );
if( lcl_isRightAngledAxesSetAndSupported( xSceneProperties ) )
{
ThreeDHelper::adaptRadAnglesForRightAngledAxes( fXAngleRad, fYAngleRad );
fZAngleRad=0.0;
}
if( cos(fXAngleRad)*cos(fYAngleRad)<0.0 )
eRet = CuboidPlanePosition_Front;
return eRet;
}
CuboidPlanePosition ThreeDHelper::getAutomaticCuboidPlanePositionForStandardBottom( const Reference< beans::XPropertySet >& xSceneProperties )
{
CuboidPlanePosition eRet(CuboidPlanePosition_Bottom);
double fXAngleRad=0.0; double fYAngleRad=0.0; double fZAngleRad=0.0;
ThreeDHelper::getRotationAngleFromDiagram( xSceneProperties, fXAngleRad, fYAngleRad, fZAngleRad );
if( lcl_isRightAngledAxesSetAndSupported( xSceneProperties ) )
{
ThreeDHelper::adaptRadAnglesForRightAngledAxes( fXAngleRad, fYAngleRad );
fZAngleRad=0.0;
}
if( sin(fXAngleRad)*cos(fYAngleRad)<0.0 )
eRet = CuboidPlanePosition_Top;
return eRet;
}
//.............................................................................
} //namespace chart
//.............................................................................