blob: c4700b9f7a120d37a2fc9614fa69186708941d6a [file] [log] [blame]
/**************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
#ifndef INCLUDED_CANVAS_CANVASTOOLS_HXX
#define INCLUDED_CANVAS_CANVASTOOLS_HXX
#include <rtl/math.hxx>
#include <com/sun/star/uno/Reference.hxx>
#include <com/sun/star/uno/Sequence.hxx>
#include <com/sun/star/uno/RuntimeException.hpp>
#include <com/sun/star/lang/IllegalArgumentException.hpp>
#include <com/sun/star/lang/IndexOutOfBoundsException.hpp>
#include <osl/diagnose.h>
#include <rtl/ustring.hxx>
#include <string.h> // for strcmp
#include <vector>
#include <limits>
#include <algorithm>
namespace basegfx
{
class B2DHomMatrix;
class B2DRange;
class B2IRange;
class B2IPoint;
class B2DPolyPolygon;
}
namespace com { namespace sun { namespace star { namespace geometry
{
struct RealSize2D;
struct IntegerSize2D;
struct AffineMatrix2D;
struct Matrix2D;
} } } }
namespace com { namespace sun { namespace star { namespace rendering
{
struct RenderState;
struct ViewState;
struct IntegerBitmapLayout;
class XCanvas;
struct Texture;
class XIntegerBitmapColorSpace;
class XPolyPolygon2D;
bool operator==( const RenderState& rLHS,
const RenderState& rRHS );
bool operator==( const ViewState& rLHS,
const ViewState& rRHS );
} } } }
namespace com { namespace sun { namespace star { namespace awt
{
struct Rectangle;
class XWindow2;
} } } }
class Color;
namespace canvas
{
namespace tools
{
/** Compute the next highest power of 2 of a 32-bit value
Code devised by Sean Anderson, in good ole HAKMEM
tradition.
@return 1 << (lg(x - 1) + 1)
*/
inline sal_uInt32 nextPow2( sal_uInt32 x )
{
--x;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return ++x;
}
/**
*
* Count the number of 1-bits of an n-bit value
*
*/
// mickey's math tricks...
inline unsigned int pow2( unsigned int c ) { return 0x1 << c; }
inline unsigned int mask( unsigned int c ) { return ((unsigned int)(-1)) / (pow2(pow2(c)) + 1); }
inline unsigned int count( unsigned int x, unsigned int c ) { return ((x) & mask(c)) + (((x) >> (pow2(c))) & mask(c)); }
template<typename T>
inline unsigned int bitcount( T c ) {
unsigned int nByteIndex = 0;
unsigned int nNumBytes = sizeof(T)<<2;
do {
c=count(c,nByteIndex++);
nNumBytes >>= 1;
} while(nNumBytes);
return c;
}
inline sal_uInt32 bitcount32( sal_uInt32 c ) {
c=count(c,0);
c=count(c,1);
c=count(c,2);
c=count(c,3);
c=count(c,4);
return c;
}
/** Round given floating point value down to next integer
*/
inline sal_Int32 roundDown( const double& rVal )
{
return static_cast< sal_Int32 >( floor( rVal ) );
}
/** Round given floating point value up to next integer
*/
inline sal_Int32 roundUp( const double& rVal )
{
return static_cast< sal_Int32 >( ceil( rVal ) );
}
/** Create a RealSize2D with both coordinate values set to +infinity
*/
::com::sun::star::geometry::RealSize2D createInfiniteSize2D();
// View- and RenderState utilities
// ===================================================================
::com::sun::star::rendering::RenderState&
initRenderState( ::com::sun::star::rendering::RenderState& renderState );
::com::sun::star::rendering::ViewState&
initViewState( ::com::sun::star::rendering::ViewState& viewState );
::basegfx::B2DHomMatrix&
getViewStateTransform( ::basegfx::B2DHomMatrix& transform,
const ::com::sun::star::rendering::ViewState& viewState );
::com::sun::star::rendering::ViewState&
setViewStateTransform( ::com::sun::star::rendering::ViewState& viewState,
const ::basegfx::B2DHomMatrix& transform );
::basegfx::B2DHomMatrix&
getRenderStateTransform( ::basegfx::B2DHomMatrix& transform,
const ::com::sun::star::rendering::RenderState& renderState );
::com::sun::star::rendering::RenderState&
setRenderStateTransform( ::com::sun::star::rendering::RenderState& renderState,
const ::basegfx::B2DHomMatrix& transform );
::com::sun::star::rendering::ViewState&
appendToViewState( ::com::sun::star::rendering::ViewState& viewState,
const ::basegfx::B2DHomMatrix& transform );
::com::sun::star::rendering::RenderState&
appendToRenderState( ::com::sun::star::rendering::RenderState& renderState,
const ::basegfx::B2DHomMatrix& transform );
::com::sun::star::rendering::ViewState&
prependToViewState( ::com::sun::star::rendering::ViewState& viewState,
const ::basegfx::B2DHomMatrix& transform );
::com::sun::star::rendering::RenderState&
prependToRenderState( ::com::sun::star::rendering::RenderState& renderState,
const ::basegfx::B2DHomMatrix& transform );
::basegfx::B2DHomMatrix&
mergeViewAndRenderTransform( ::basegfx::B2DHomMatrix& transform,
const ::com::sun::star::rendering::ViewState& viewState,
const ::com::sun::star::rendering::RenderState& renderState );
::com::sun::star::rendering::ViewState&
mergeViewAndRenderState( ::com::sun::star::rendering::ViewState& resultViewState,
const ::com::sun::star::rendering::ViewState& viewState,
const ::com::sun::star::rendering::RenderState& renderState,
const ::com::sun::star::uno::Reference<
::com::sun::star::rendering::XCanvas >& xCanvas );
// Matrix utilities
// ===================================================================
::com::sun::star::geometry::AffineMatrix2D&
setIdentityAffineMatrix2D( ::com::sun::star::geometry::AffineMatrix2D& matrix );
::com::sun::star::geometry::Matrix2D&
setIdentityMatrix2D( ::com::sun::star::geometry::Matrix2D& matrix );
// Special utilities
// ===================================================================
/** Calc the bounding rectangle of a transformed rectangle.
The method applies the given transformation to the
specified input rectangle, and returns the bounding box of
the resulting output area.
@param o_Rect
Output rectangle
@param i_Rect
Input rectangle
@param i_Transformation
Transformation to apply to the input rectangle
@see calcRectToRectTransform()
@return a reference to the resulting rectangle
*/
::basegfx::B2DRange& calcTransformedRectBounds( ::basegfx::B2DRange& o_Rect,
const ::basegfx::B2DRange& i_Rect,
const ::basegfx::B2DHomMatrix& i_Transformation );
/** Calc a transform that maps one rectangle on top of
another.
The method is a kissing cousin to
calcTransformedRectBounds(). It can be used to modify the
given transformation matrix, such that it transforms the
given input rectangle to the given output rectangle,
changing only translation and scale (if necessary). Thus,
if you've calculated an output rectangle via
calcTransformedRectBounds(), you can move and scale that
rectangle as you like, and have this method calculate the
required total transformation for it.
@param o_transform
Output parameter, to receive the resulting transformation
matrix.
@param i_destRect
Input parameter, specifies the requested destination
rectangle. The resulting transformation will exactly map
the source rectangle to the destination rectangle.
@param i_srcRect
Input parameter, specifies the original source
rectangle. The resulting transformation will exactly map
the source rectangle to the destination rectangle.
@param i_transformation
The original transformation matrix. This is changed with
translations and scalings (if necessary), to exactly map
the source rectangle to the destination rectangle.
@return a reference to the resulting transformation matrix
@see calcTransformedRectBounds()
*/
::basegfx::B2DHomMatrix& calcRectToRectTransform( ::basegfx::B2DHomMatrix& o_transform,
const ::basegfx::B2DRange& i_destRect,
const ::basegfx::B2DRange& i_srcRect,
const ::basegfx::B2DHomMatrix& i_transformation );
/** Calc a transform that maps the upper, left corner of a
rectangle to the origin.
The method is a specialized version of
calcRectToRectTransform(), mapping the input rectangle's
the upper, left corner to the origin, and leaving the size
untouched.
@param o_transform
Output parameter, to receive the resulting transformation
matrix.
@param i_srcRect
Input parameter, specifies the original source
rectangle. The resulting transformation will exactly map
the source rectangle's upper, left corner to the origin.
@param i_transformation
The original transformation matrix. This is changed with
translations (if necessary), to exactly map the source
rectangle to the origin.
@return a reference to the resulting transformation matrix
@see calcRectToRectTransform()
@see calcTransformedRectBounds()
*/
::basegfx::B2DHomMatrix& calcRectToOriginTransform( ::basegfx::B2DHomMatrix& o_transform,
const ::basegfx::B2DRange& i_srcRect,
const ::basegfx::B2DHomMatrix& i_transformation );
/** Check whether a given rectangle is within another
transformed rectangle.
This method checks for polygonal containedness, i.e. the
transformed rectangle is not represented as an axis-alignd
rectangle anymore (like calcTransformedRectBounds()), but
polygonal. Thus, the insideness test is based on tight
bounds.
@param rContainedRect
This rectangle is checked, whether it is fully within the
transformed rTransformRect.
@param rTransformRect
This rectangle is transformed, and then checked whether it
fully contains rContainedRect.
@param rTransformation
This transformation is applied to rTransformRect
*/
bool isInside( const ::basegfx::B2DRange& rContainedRect,
const ::basegfx::B2DRange& rTransformRect,
const ::basegfx::B2DHomMatrix& rTransformation );
/** Clip a scroll to the given bound rect
@param io_rSourceArea
Source area to scroll. The resulting clipped source area
is returned therein.
@param io_rDestPoint
Destination point of the scroll (upper, left corner of
rSourceArea after the scroll). The new, resulting
destination point is returned therein.q
@param o_ClippedAreas
Vector of rectangles in the <em>destination</em> area
coordinate system, which are clipped away from the source
area, and thus need extra updates (i.e. they are not
correctly copy from the scroll operation, since there was
no information about them in the source).
@param rBounds
Bounds to clip against.
@return false, if the resulting scroll area is empty
*/
bool clipScrollArea( ::basegfx::B2IRange& io_rSourceArea,
::basegfx::B2IPoint& io_rDestPoint,
::std::vector< ::basegfx::B2IRange >& o_ClippedAreas,
const ::basegfx::B2IRange& rBounds );
/** Clip a blit between two differently surfaces.
This method clips source and dest rect for a clip between
two differently clipped surfaces, such that the resulting
blit rects are fully within both clip areas.
@param io_rSourceArea
Source area of the blit. Returned therein is the computed
clipped source area.
@param io_rDestPoint
Dest area of the blit. Returned therein is the computed
clipped dest area.
@param rSourceBounds
Clip bounds of the source surface
@param rDestBounds
Clip bounds of the dest surface
@return false, if the resulting blit is empty, i.e. fully
clipped away.
*/
bool clipBlit( ::basegfx::B2IRange& io_rSourceArea,
::basegfx::B2IPoint& io_rDestPoint,
const ::basegfx::B2IRange& rSourceBounds,
const ::basegfx::B2IRange& rDestBounds );
/** Return range of integer pixel, which will cover the sprite
given by the floating point range.
This method assumes that sprite sizes are always integer,
and that the sprite position (top, left edge of the
sprite) is rounded to the nearest integer before
rendering.
@param rRange
Input range. Values must be within the representable
bounds of sal_Int32
@return the integer range, which is covered by the sprite
given by rRange.
*/
::basegfx::B2IRange spritePixelAreaFromB2DRange( const ::basegfx::B2DRange& rRange );
/** Retrieve various internal properties of the actual canvas implementation.
This method retrieves a bunch of internal, implementation-
and platform-dependent values from the canvas
implementation. Among them are for example operating
system window handles. The actual layout and content of
the returned sequence is dependent on the component
implementation, undocumented and subject to change.
@param i_rxCanvas
Input parameter, the canvas representation for which the device information
is to be retrieveds
@param o_rxParams
Output parameter, the sequence of Anys that hold the device parameters. Layout is as described above
@return A reference to the resulting sequence of parameters
*/
::com::sun::star::uno::Sequence< ::com::sun::star::uno::Any >& getDeviceInfo(
const ::com::sun::star::uno::Reference< ::com::sun::star::rendering::XCanvas >& i_rxCanvas,
::com::sun::star::uno::Sequence< ::com::sun::star::uno::Any >& o_rxParams );
/** Return a color space for a default RGBA integer format
Use this method for dead-simple bitmap implementations,
that map all their formats to 8888 RGBA color.
*/
::com::sun::star::uno::Reference< ::com::sun::star::rendering::XIntegerBitmapColorSpace> getStdColorSpace();
/** Return a memory layout for a default RGBA integer format
Use this method for dead-simple bitmap implementations,
that map all their formats to 8888 RGBA color.
*/
::com::sun::star::rendering::IntegerBitmapLayout getStdMemoryLayout(
const ::com::sun::star::geometry::IntegerSize2D& rBitmapSize );
/// Convert standard 8888 RGBA color to vcl color
::Color stdIntSequenceToColor( const ::com::sun::star::uno::Sequence<sal_Int8>& rColor );
/// Convert standard 8888 RGBA color to vcl color
::com::sun::star::uno::Sequence<sal_Int8> colorToStdIntSequence( const ::Color& rColor );
// Modeled closely after boost::numeric_cast, only that we
// issue some trace output here and throw a RuntimeException
/** Cast numeric value into another (numeric) data type
Apart from converting the numeric value, this template
also checks if any overflow, underflow, or sign
information is lost (if yes, it throws an
uno::RuntimeException.
*/
template< typename Target, typename Source > inline Target numeric_cast( Source arg )
{
// typedefs abbreviating respective trait classes
typedef ::std::numeric_limits< Source > SourceLimits;
typedef ::std::numeric_limits< Target > TargetLimits;
if( ( arg<0 && !TargetLimits::is_signed) || // loosing the sign here
( SourceLimits::is_signed && arg<TargetLimits::min()) || // underflow will happen
( arg>TargetLimits::max() ) ) // overflow will happen
{
#if defined(VERBOSE) && defined(DBG_UTIL)
OSL_TRACE("numeric_cast detected data loss");
#endif
throw ::com::sun::star::uno::RuntimeException(
::rtl::OUString(RTL_CONSTASCII_USTRINGPARAM( "numeric_cast detected data loss" )),
NULL );
}
return static_cast<Target>(arg);
}
::com::sun::star::awt::Rectangle getAbsoluteWindowRect(
const ::com::sun::star::awt::Rectangle& rRect,
const ::com::sun::star::uno::Reference< ::com::sun::star::awt::XWindow2 >& xWin );
/** Retrieve for small bound marks around each corner of the given rectangle
*/
::basegfx::B2DPolyPolygon getBoundMarksPolyPolygon( const ::basegfx::B2DRange& rRange );
/** Calculate number of gradient "strips" to generate (takes
into account device resolution)
@param nColorSteps
Maximal integer difference between all color stops, needed
for smooth gradient color differences
*/
int calcGradientStepCount( ::basegfx::B2DHomMatrix& rTotalTransform,
const ::com::sun::star::rendering::ViewState& viewState,
const ::com::sun::star::rendering::RenderState& renderState,
const ::com::sun::star::rendering::Texture& texture,
int nColorSteps );
/** A very simplistic map for ASCII strings and arbitrary value
types.
This class internally references a constant, static array of
sorted MapEntries, and performs a binary search to look up
values for a given query string. Note that this map is static,
i.e. not meant to be extented at runtime.
@tpl ValueType
The value type this map should store, associated with an ASCII
string.
*/
template< typename ValueType > class ValueMap
{
public:
struct MapEntry
{
const char* maKey;
ValueType maValue;
};
/** Create a ValueMap for the given array of MapEntries.
@param pMap
Pointer to a <em>static</em> array of MapEntries. Must
live longer than this object! Make absolutely sure that
the string entries passed via pMap are ASCII-only -
everything else might not yield correct string
comparisons, and thus will result in undefined behaviour.
@param nEntries
Number of entries for pMap
@param bCaseSensitive
Whether the map query should be performed case sensitive
or not. When bCaseSensitive is false, all MapEntry strings
must be lowercase!
*/
ValueMap( const MapEntry* pMap,
::std::size_t nEntries,
bool bCaseSensitive ) :
mpMap( pMap ),
mnEntries( nEntries ),
mbCaseSensitive( bCaseSensitive )
{
#ifdef DBG_UTIL
// Ensure that map entries are sorted (and all lowercase, if this
// map is case insensitive)
const ::rtl::OString aStr( pMap->maKey );
if( !mbCaseSensitive &&
aStr != aStr.toAsciiLowerCase() )
{
OSL_TRACE("ValueMap::ValueMap(): Key %s is not lowercase",
pMap->maKey);
OSL_ENSURE( false, "ValueMap::ValueMap(): Key is not lowercase" );
}
if( mnEntries > 1 )
{
for( ::std::size_t i=0; i<mnEntries-1; ++i, ++pMap )
{
if( !mapComparator(pMap[0], pMap[1]) &&
mapComparator(pMap[1], pMap[0]) )
{
OSL_TRACE("ValueMap::ValueMap(): Map is not sorted, keys %s and %s are wrong",
pMap[0].maKey,
pMap[1].maKey);
OSL_ENSURE( false,
"ValueMap::ValueMap(): Map is not sorted" );
}
const ::rtl::OString aStr2( pMap[1].maKey );
if( !mbCaseSensitive &&
aStr2 != aStr2.toAsciiLowerCase() )
{
OSL_TRACE("ValueMap::ValueMap(): Key %s is not lowercase",
pMap[1].maKey);
OSL_ENSURE( false, "ValueMap::ValueMap(): Key is not lowercase" );
}
}
}
#endif
}
/** Lookup a value for the given query string
@param rName
The string to lookup. If the map was created with the case
insensitive flag, the lookup is performed
case-insensitive, otherwise, case-sensitive.
@param o_rResult
Output parameter, which receives the value associated with
the query string. If no value was found, the referenced
object is kept unmodified.
@return true, if a matching entry was found.
*/
bool lookup( const ::rtl::OUString& rName,
ValueType& o_rResult ) const
{
// rName is required to contain only ASCII characters.
// TODO(Q1): Enforce this at upper layers
::rtl::OString aKey( ::rtl::OUStringToOString( mbCaseSensitive ? rName : rName.toAsciiLowerCase(),
RTL_TEXTENCODING_ASCII_US ) );
MapEntry aSearchKey =
{
aKey.getStr(),
ValueType()
};
const MapEntry* pRes;
const MapEntry* pEnd = mpMap+mnEntries;
if( (pRes=::std::lower_bound( mpMap,
pEnd,
aSearchKey,
&mapComparator )) != pEnd )
{
// place to _insert before_ found - is it equal to
// the search key?
if( strcmp( pRes->maKey, aSearchKey.maKey ) == 0 )
{
// yep, correct entry found
o_rResult = pRes->maValue;
return true;
}
}
// not found
return false;
}
private:
static bool mapComparator( const MapEntry& rLHS,
const MapEntry& rRHS )
{
return strcmp( rLHS.maKey,
rRHS.maKey ) < 0;
}
const MapEntry* mpMap;
::std::size_t mnEntries;
bool mbCaseSensitive;
};
}
}
#endif /* INCLUDED_CANVAS_CANVASTOOLS_HXX */
// eof