blob: d26846cf57e6bcedddd7fdd95bbb30f3206e5247 [file] [log] [blame]
/**************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_bridges.hxx"
#include <com/sun/star/uno/genfunc.hxx>
#include <uno/data.h>
#include <typelib/typedescription.hxx>
#include "bridges/cpp_uno/shared/bridge.hxx"
#include "bridges/cpp_uno/shared/cppinterfaceproxy.hxx"
#include "bridges/cpp_uno/shared/types.hxx"
#include "bridges/cpp_uno/shared/vtablefactory.hxx"
#include "share.hxx"
using namespace ::com::sun::star::uno;
namespace
{
//==================================================================================================
static typelib_TypeClass cpp2uno_call(
bridges::cpp_uno::shared::CppInterfaceProxy * pThis,
const typelib_TypeDescription * pMemberTypeDescr,
typelib_TypeDescriptionReference * pReturnTypeRef, // 0 indicates void return
sal_Int32 nParams, typelib_MethodParameter * pParams,
void ** gpreg, void ** fpreg, void ** ovrflw,
sal_Int64 * pRegisterReturn /* space for register return */ )
{
// gpreg: [ret *], this, [gpr params]
// fpreg: [fpr params]
// ovrflw: [gpr or fpr params (space for entire parameter list in structure format properly aligned)]
// return
typelib_TypeDescription * pReturnTypeDescr = 0;
if (pReturnTypeRef)
TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef );
void * pUnoReturn = 0;
void * pCppReturn = 0; // complex return ptr: if != 0 && != pUnoReturn, reconversion need
sal_Int32 ngpreg = 0;
sal_Int32 nfpreg = 0;
if (pReturnTypeDescr)
{
if (bridges::cpp_uno::shared::isSimpleType( pReturnTypeDescr ))
pUnoReturn = pRegisterReturn; // direct way for simple types
else // complex return via ptr (pCppReturn)
{
pCppReturn = *gpreg;
ngpreg++;
++ovrflw;
pUnoReturn = (bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr )
? alloca( pReturnTypeDescr->nSize )
: pCppReturn); // direct way
}
}
// pop this
ngpreg++;
++ovrflw;
// after handling optional return pointer and "this"
// make use of the space that is allocated to store all parameters in the callers stack
// by comying the proper registers filled with parameters to that space
char * pCppStack = (char *)ovrflw;
sal_Int32 nPos;
for ( nPos = 0; nPos < nParams; ++nPos )
{
const typelib_MethodParameter & rParam = pParams[nPos];
if (rParam.bOut)
{
if (ngpreg < 8)
{
*(sal_Int32 *)pCppStack = ((sal_Int32 *)gpreg)[ngpreg++];
}
pCppStack += sizeof (sal_Int32);
}
else
{
switch (rParam.pTypeRef->eTypeClass)
{
case typelib_TypeClass_FLOAT:
if (nfpreg < 13)
{
*(float *)pCppStack = ((double *)fpreg)[nfpreg++];
}
pCppStack += sizeof (float);
ngpreg += 1;
break;
case typelib_TypeClass_DOUBLE:
if (nfpreg < 13)
{
*(double *)pCppStack = ((double *)fpreg)[nfpreg++];
}
pCppStack += sizeof (double);
ngpreg += 2;
break;
case typelib_TypeClass_UNSIGNED_HYPER:
case typelib_TypeClass_HYPER:
if (ngpreg < 8)
{
*(sal_Int32 *)pCppStack = ((sal_Int32 *)gpreg)[ngpreg++];
}
pCppStack += sizeof (sal_Int32);
// fall through on purpose
default:
if (ngpreg < 8)
{
*(sal_Int32 *)pCppStack = ((sal_Int32 *)gpreg)[ngpreg++];
}
pCppStack += sizeof (sal_Int32);
}
}
}
// now the stack has all of the paramters stored in it ready to be processed
// so we are ready to build the uno call stack
pCppStack = (char *)ovrflw;
// stack space
OSL_ENSURE( sizeof(void *) == sizeof(sal_Int32), "### unexpected size!" );
// parameters
void ** pUnoArgs = (void **)alloca( 4 * sizeof(void *) * nParams );
void ** pCppArgs = pUnoArgs + nParams;
// indizes of values this have to be converted (interface conversion cpp<=>uno)
sal_Int32 * pTempIndizes = (sal_Int32 *)(pUnoArgs + (2 * nParams));
// type descriptions for reconversions
typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pUnoArgs + (3 * nParams));
sal_Int32 nTempIndizes = 0;
for ( nPos = 0; nPos < nParams; ++nPos )
{
const typelib_MethodParameter & rParam = pParams[nPos];
typelib_TypeDescription * pParamTypeDescr = 0;
TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef );
if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr ))
// value
{
switch (pParamTypeDescr->eTypeClass)
{
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
pCppArgs[nPos] = pCppStack +3;
pUnoArgs[nPos] = pCppStack +3;
break;
case typelib_TypeClass_CHAR:
case typelib_TypeClass_SHORT:
case typelib_TypeClass_UNSIGNED_SHORT:
pCppArgs[nPos] = pCppStack +2;
pUnoArgs[nPos] = pCppStack +2;
break;
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
case typelib_TypeClass_DOUBLE:
pCppArgs[nPos] = pCppStack;
pUnoArgs[nPos] = pCppStack;
pCppStack += sizeof(sal_Int32); // extra long (two regs)
break;
default:
pCppArgs[nPos] = pCppStack;
pUnoArgs[nPos] = pCppStack;
}
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
else // ptr to complex value | ref
{
pCppArgs[nPos] = *(void **)pCppStack;
if (! rParam.bIn) // is pure out
{
// uno out is unconstructed mem!
pUnoArgs[nPos] = alloca( pParamTypeDescr->nSize );
pTempIndizes[nTempIndizes] = nPos;
// will be released at reconversion
ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr;
}
// is in/inout
else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr ))
{
uno_copyAndConvertData( pUnoArgs[nPos] = alloca( pParamTypeDescr->nSize ),
*(void **)pCppStack, pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
pTempIndizes[nTempIndizes] = nPos; // has to be reconverted
// will be released at reconversion
ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr;
}
else // direct way
{
pUnoArgs[nPos] = *(void **)pCppStack;
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
}
pCppStack += sizeof(sal_Int32); // standard parameter length
}
// ExceptionHolder
uno_Any aUnoExc; // Any will be constructed by callee
uno_Any * pUnoExc = &aUnoExc;
// invoke uno dispatch call
(*pThis->getUnoI()->pDispatcher)(
pThis->getUnoI(), pMemberTypeDescr, pUnoReturn, pUnoArgs, &pUnoExc );
// in case an exception occured...
if (pUnoExc)
{
// destruct temporary in/inout params
for ( ; nTempIndizes--; )
{
sal_Int32 nIndex = pTempIndizes[nTempIndizes];
if (pParams[nIndex].bIn) // is in/inout => was constructed
uno_destructData( pUnoArgs[nIndex], ppTempParamTypeDescr[nTempIndizes], 0 );
TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndizes] );
}
if (pReturnTypeDescr)
TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
CPPU_CURRENT_NAMESPACE::raiseException(
&aUnoExc, pThis->getBridge()->getUno2Cpp() );
// has to destruct the any
// is here for dummy
return typelib_TypeClass_VOID;
}
else // else no exception occured...
{
// temporary params
for ( ; nTempIndizes--; )
{
sal_Int32 nIndex = pTempIndizes[nTempIndizes];
typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndizes];
if (pParams[nIndex].bOut) // inout/out
{
// convert and assign
uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release );
uno_copyAndConvertData( pCppArgs[nIndex], pUnoArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getUno2Cpp() );
}
// destroy temp uno param
uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 );
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
// return
if (pCppReturn) // has complex return
{
if (pUnoReturn != pCppReturn) // needs reconversion
{
uno_copyAndConvertData( pCppReturn, pUnoReturn, pReturnTypeDescr,
pThis->getBridge()->getUno2Cpp() );
// destroy temp uno return
uno_destructData( pUnoReturn, pReturnTypeDescr, 0 );
}
// complex return ptr is set to return reg
*(void **)pRegisterReturn = pCppReturn;
}
if (pReturnTypeDescr)
{
typelib_TypeClass eRet = (typelib_TypeClass)pReturnTypeDescr->eTypeClass;
TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
return eRet;
}
else
return typelib_TypeClass_VOID;
}
}
//==================================================================================================
static typelib_TypeClass cpp_mediate(
sal_Int32 nFunctionIndex,
sal_Int32 nVtableOffset,
void ** gpreg, void ** fpreg, void ** ovrflw,
sal_Int64 * pRegisterReturn /* space for register return */ )
{
OSL_ENSURE( sizeof(sal_Int32)==sizeof(void *), "### unexpected!" );
// gpreg: [ret *], this, [other gpr params]
// fpreg: [fpr params]
// ovrflw: [gpr or fpr params (in space allocated for all params properly aligned)]
void * pThis;
if( nFunctionIndex & 0x80000000 )
{
nFunctionIndex &= 0x7fffffff;
pThis = gpreg[1];
}
else
{
pThis = gpreg[0];
}
pThis = static_cast< char * >(pThis) - nVtableOffset;
bridges::cpp_uno::shared::CppInterfaceProxy * pCppI
= bridges::cpp_uno::shared::CppInterfaceProxy::castInterfaceToProxy(pThis);
typelib_InterfaceTypeDescription * pTypeDescr = pCppI->getTypeDescr();
OSL_ENSURE( nFunctionIndex < pTypeDescr->nMapFunctionIndexToMemberIndex, "### illegal vtable index!" );
if (nFunctionIndex >= pTypeDescr->nMapFunctionIndexToMemberIndex)
{
throw RuntimeException(
rtl::OUString::createFromAscii("illegal vtable index!"),
(XInterface *)pThis );
}
// determine called method
sal_Int32 nMemberPos = pTypeDescr->pMapFunctionIndexToMemberIndex[nFunctionIndex];
OSL_ENSURE( nMemberPos < pTypeDescr->nAllMembers, "### illegal member index!" );
TypeDescription aMemberDescr( pTypeDescr->ppAllMembers[nMemberPos] );
typelib_TypeClass eRet;
switch (aMemberDescr.get()->eTypeClass)
{
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
{
if (pTypeDescr->pMapMemberIndexToFunctionIndex[nMemberPos] == nFunctionIndex)
{
// is GET method
eRet = cpp2uno_call(
pCppI, aMemberDescr.get(),
((typelib_InterfaceAttributeTypeDescription *)aMemberDescr.get())->pAttributeTypeRef,
0, 0, // no params
gpreg, fpreg, ovrflw, pRegisterReturn );
}
else
{
// is SET method
typelib_MethodParameter aParam;
aParam.pTypeRef =
((typelib_InterfaceAttributeTypeDescription *)aMemberDescr.get())->pAttributeTypeRef;
aParam.bIn = sal_True;
aParam.bOut = sal_False;
eRet = cpp2uno_call(
pCppI, aMemberDescr.get(),
0, // indicates void return
1, &aParam,
gpreg, fpreg, ovrflw, pRegisterReturn );
}
break;
}
case typelib_TypeClass_INTERFACE_METHOD:
{
// is METHOD
switch (nFunctionIndex)
{
case 1: // acquire()
pCppI->acquireProxy(); // non virtual call!
eRet = typelib_TypeClass_VOID;
break;
case 2: // release()
pCppI->releaseProxy(); // non virtual call!
eRet = typelib_TypeClass_VOID;
break;
case 0: // queryInterface() opt
{
typelib_TypeDescription * pTD = 0;
TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( gpreg[2] )->getTypeLibType() );
if (pTD)
{
XInterface * pInterface = 0;
(*pCppI->getBridge()->getCppEnv()->getRegisteredInterface)(
pCppI->getBridge()->getCppEnv(),
(void **)&pInterface, pCppI->getOid().pData, (typelib_InterfaceTypeDescription *)pTD );
if (pInterface)
{
::uno_any_construct(
reinterpret_cast< uno_Any * >( gpreg[0] ),
&pInterface, pTD, cpp_acquire );
pInterface->release();
TYPELIB_DANGER_RELEASE( pTD );
*(void **)pRegisterReturn = gpreg[0];
eRet = typelib_TypeClass_ANY;
break;
}
TYPELIB_DANGER_RELEASE( pTD );
}
} // else perform queryInterface()
default:
eRet = cpp2uno_call(
pCppI, aMemberDescr.get(),
((typelib_InterfaceMethodTypeDescription *)aMemberDescr.get())->pReturnTypeRef,
((typelib_InterfaceMethodTypeDescription *)aMemberDescr.get())->nParams,
((typelib_InterfaceMethodTypeDescription *)aMemberDescr.get())->pParams,
gpreg, fpreg, ovrflw, pRegisterReturn );
}
break;
}
default:
{
throw RuntimeException(
rtl::OUString::createFromAscii("no member description found!"),
(XInterface *)pThis );
// is here for dummy
eRet = typelib_TypeClass_VOID;
}
}
return eRet;
}
//==================================================================================================
/**
* is called on incoming vtable calls
* (called by asm snippets)
*/
static void cpp_vtable_call( int nFunctionIndex, int nVtableOffset, void** gpregptr, void** fpregptr, void** ovrflw)
{
sal_Int32 gpreg[8];
double fpreg[13];
// FIXME: why are we restoring the volatile ctr register here
sal_Int32 ctrsave = ((sal_Int32*)gpregptr)[-1];
memcpy( gpreg, gpregptr, 32);
memcpy( fpreg, fpregptr, 104);
volatile long nRegReturn[2];
// sal_Bool bComplex = nFunctionIndex & 0x80000000 ? sal_True : sal_False;
typelib_TypeClass aType =
cpp_mediate( nFunctionIndex, nVtableOffset, (void**)gpreg, (void**)fpreg, ovrflw, (sal_Int64*)nRegReturn );
// FIXME: why are we restoring the volatile ctr register here
// FIXME: and why are we putting back the values for r4, r5, and r6 as well
// FIXME: this makes no sense to me, all of these registers are volatile!
__asm__( "lwz r4, %0\n\t"
"mtctr r4\n\t"
"lwz r4, %1\n\t"
"lwz r5, %2\n\t"
"lwz r6, %3\n\t"
: : "m"(ctrsave), "m"(gpreg[1]), "m"(gpreg[2]), "m"(gpreg[3]) );
switch( aType )
{
// move return value into register space
// (will be loaded by machine code snippet)
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
__asm__( "lbz r3,%0\n\t" : :
"m"(nRegReturn[0]) );
break;
case typelib_TypeClass_CHAR:
case typelib_TypeClass_SHORT:
case typelib_TypeClass_UNSIGNED_SHORT:
__asm__( "lhz r3,%0\n\t" : :
"m"(nRegReturn[0]) );
break;
case typelib_TypeClass_FLOAT:
__asm__( "lfs f1,%0\n\t" : :
"m" (*((float*)nRegReturn)) );
break;
case typelib_TypeClass_DOUBLE:
__asm__( "lfd f1,%0\n\t" : :
"m" (*((double*)nRegReturn)) );
break;
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
__asm__( "lwz r4,%0\n\t" : :
"m"(nRegReturn[1]) ); // fall through
default:
__asm__( "lwz r3,%0\n\t" : :
"m"(nRegReturn[0]) );
break;
}
}
int const codeSnippetSize = 136;
unsigned char * codeSnippet( unsigned char * code, sal_Int32 functionIndex,
sal_Int32 vtableOffset, bool simpleRetType )
{
if (! simpleRetType )
functionIndex |= 0x80000000;
// OSL_ASSERT( sizeof (long) == 4 );
// FIXME: why are we leaving an 8k gap in the stack here
// FIXME: is this to allow room for signal handling frames?
// FIXME: seems like overkill here but this is what was done for Mac OSX for gcc2
// FIXME: also why no saving of the non-volatile CR pieces here, to be safe
// FIXME: we probably should
/* generate this code */
// # so first save gpr 3 to gpr 10 (aligned to 4)
// stw r3, -8000(r1)
// stw r4, -7996(r1)
// stw r5, -7992(r1)
// stw r6, -7988(r1)
// stw r7, -7984(r1)
// stw r8, -7980(r1)
// stw r9, -7976(r1)
// stw r10,-7972(r1)
// # next save fpr 1 to fpr 13 (aligned to 8)
// stfd f1, -7968(r1)
// stfd f2, -7960(r1)
// stfd f3, -7952(r1)
// stfd f4, -7944(r1)
// stfd f5, -7936(r1)
// stfd f6, -7928(r1)
// stfd f7, -7920(r1)
// stfd f8, -7912(r1)
// stfd f9, -7904(r1)
// stfd f10,-7896(r1)
// stfd f11,-7888(r1)
// stfd f12,-7880(r1)
// stfd f13,-7872(r1)
// FIXME: ctr is volatile, while are we saving it and not CR?
// mfctr r3
// stw r3, -8004(r1)
// # now here is where cpp_vtable_call must go
// lis r3,0xdead
// ori r3,r3,0xbeef
// mtctr r3
// # now load up the functionIndex number
// lis r3, 0xdead
// ori r3,r3,0xbeef
// # now load up the vtableOffset
// lis r4, 0xdead
// ori r4,r4,0xbeef
// #now load up the pointer to the saved gpr registers
// addi r5,r1,-8000
// #now load up the pointer to the saved fpr registers
// addi r6,r1,-7968
// #now load up the pointer to the overflow call stack
// addi r7,r1,24 # frame pointer plus 24
// bctr
unsigned long * p = (unsigned long *) code;
* p++ = 0x9061e0c0;
* p++ = 0x9081e0c4;
* p++ = 0x90a1e0c8;
* p++ = 0x90c1e0cc;
* p++ = 0x90e1e0d0;
* p++ = 0x9101e0d4;
* p++ = 0x9121e0d8;
* p++ = 0x9141e0dc;
* p++ = 0xd821e0e0;
* p++ = 0xd841e0e8;
* p++ = 0xd861e0f0;
* p++ = 0xd881e0f8;
* p++ = 0xd8a1e100;
* p++ = 0xd8c1e108;
* p++ = 0xd8e1e110;
* p++ = 0xd901e118;
* p++ = 0xd921e120;
* p++ = 0xd941e128;
* p++ = 0xd961e130;
* p++ = 0xd981e138;
* p++ = 0xd9a1e140;
* p++ = 0x7c6902a6;
* p++ = 0x9061e0bc;
* p++ = 0x3c600000 | (((unsigned long)cpp_vtable_call) >> 16);
* p++ = 0x60630000 | (((unsigned long)cpp_vtable_call) & 0x0000FFFF);
* p++ = 0x7c6903a6;
* p++ = 0x3c600000 | (((unsigned long)functionIndex) >> 16);
* p++ = 0x60630000 | (((unsigned long)functionIndex) & 0x0000FFFF);
* p++ = 0x3c800000 | (((unsigned long)vtableOffset) >> 16);
* p++ = 0x60840000 | (((unsigned long)vtableOffset) & 0x0000FFFF);
* p++ = 0x38a1e0c0;
* p++ = 0x38c1e0e0;
* p++ = 0x38e10018;
* p++ = 0x4e800420;
return (code + codeSnippetSize);
}
}
void bridges::cpp_uno::shared::VtableFactory::flushCode(unsigned char const * bptr, unsigned char const * eptr)
{
int const lineSize = 32;
for (unsigned char const * p = bptr; p < eptr + lineSize; p += lineSize) {
__asm__ volatile ("dcbst 0, %0" : : "r"(p) : "memory");
}
__asm__ volatile ("sync" : : : "memory");
for (unsigned char const * p = bptr; p < eptr + lineSize; p += lineSize) {
__asm__ volatile ("icbi 0, %0" : : "r"(p) : "memory");
}
__asm__ volatile ("isync" : : : "memory");
}
struct bridges::cpp_uno::shared::VtableFactory::Slot { void * fn; };
bridges::cpp_uno::shared::VtableFactory::Slot *
bridges::cpp_uno::shared::VtableFactory::mapBlockToVtable(void * block)
{
return static_cast< Slot * >(block) + 2;
}
sal_Size bridges::cpp_uno::shared::VtableFactory::getBlockSize(
sal_Int32 slotCount)
{
return (slotCount + 2) * sizeof (Slot) + slotCount * codeSnippetSize;
}
bridges::cpp_uno::shared::VtableFactory::Slot *
bridges::cpp_uno::shared::VtableFactory::initializeBlock(
void * block, sal_Int32 slotCount)
{
Slot * slots = mapBlockToVtable(block);
slots[-2].fn = 0;
slots[-1].fn = 0;
return slots + slotCount;
}
unsigned char * bridges::cpp_uno::shared::VtableFactory::addLocalFunctions(
Slot ** slots, unsigned char * code,
typelib_InterfaceTypeDescription const * type, sal_Int32 functionOffset,
sal_Int32 functionCount, sal_Int32 vtableOffset)
{
(*slots) -= functionCount;
Slot * s = *slots;
// fprintf(stderr, "in addLocalFunctions functionOffset is %x\n",functionOffset);
// fprintf(stderr, "in addLocalFunctions vtableOffset is %x\n",vtableOffset);
// fflush(stderr);
for (sal_Int32 i = 0; i < type->nMembers; ++i) {
typelib_TypeDescription * member = 0;
TYPELIB_DANGER_GET(&member, type->ppMembers[i]);
OSL_ASSERT(member != 0);
switch (member->eTypeClass) {
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
// Getter:
(s++)->fn = code;
code = codeSnippet(
code, functionOffset++, vtableOffset,
bridges::cpp_uno::shared::isSimpleType(
reinterpret_cast<
typelib_InterfaceAttributeTypeDescription * >(
member)->pAttributeTypeRef));
// Setter:
if (!reinterpret_cast<
typelib_InterfaceAttributeTypeDescription * >(
member)->bReadOnly)
{
(s++)->fn = code;
code = codeSnippet(code, functionOffset++, vtableOffset, true);
}
break;
case typelib_TypeClass_INTERFACE_METHOD:
(s++)->fn = code;
code = codeSnippet(
code, functionOffset++, vtableOffset,
bridges::cpp_uno::shared::isSimpleType(
reinterpret_cast<
typelib_InterfaceMethodTypeDescription * >(
member)->pReturnTypeRef));
break;
default:
OSL_ASSERT(false);
break;
}
TYPELIB_DANGER_RELEASE(member);
}
return code;
}