blob: 74875840d7a97bb610aa336a9acf76ea22cebf59 [file] [log] [blame]
/**************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_bridges.hxx"
#include <malloc.h>
#include <com/sun/star/uno/genfunc.hxx>
#include <uno/data.h>
#include "bridges/cpp_uno/shared/bridge.hxx"
#include "bridges/cpp_uno/shared/types.hxx"
#include "bridges/cpp_uno/shared/unointerfaceproxy.hxx"
#include "bridges/cpp_uno/shared/vtables.hxx"
#include "share.hxx"
#include <stdio.h>
#include <string.h>
using namespace ::rtl;
using namespace ::com::sun::star::uno;
namespace
{
static sal_Int32
invoke_count_words(char * pPT)
{
sal_Int32 overflow = 0, gpr = 0, fpr = 0;
int c; // character of parameter type being decoded
while (*pPT != 'X') {
c = *pPT;
switch (c) {
case 'D': /* type is double */
if (fpr < 2) fpr++; else overflow+=2;
break;
case 'F': /* type is float */
if (fpr < 2) fpr++; else overflow++;
break;
case 'H': /* type is long long */
if (gpr < 4) gpr+=2; else gpr=5, overflow+=2;
break;
case 'S':
case 'T':
case 'B':
case 'C':
if (gpr < 5) gpr++; else overflow++;
break;
default:
if (gpr < 5) gpr++; else overflow++;
break;
}
pPT++;
}
/* Round up number of overflow words to ensure stack
stays aligned to 8 bytes. */
return (overflow + 1) & ~1;
}
static void
//invoke_copy_to_stack(sal_Int32 paramCount, sal_Int32 * pStackLongs, char * pPT, sal_Int32* d_ov, sal_Int32 overflow)
invoke_copy_to_stack(sal_Int32 * pStackLongs, char * pPT, sal_Int32* d_ov, sal_Int32 overflow)
{
sal_Int32 *d_gpr = d_ov + overflow;
sal_Int64 *d_fpr = (sal_Int64 *)(d_gpr + 5);
sal_Int32 gpr = 0, fpr = 0;
char c;
while (*pPT != 'X') {
c = *pPT;
switch (c) {
case 'D': /* type is double */
if (fpr < 2)
*((double*) d_fpr) = *((double *)pStackLongs), d_fpr++, fpr++;
else
*((double*) d_ov ) = *((double *)pStackLongs), d_ov+=2;
pStackLongs += 2;
break;
case 'F': /* type is float */
if (fpr < 2) {
*((sal_Int64*) d_fpr) = 0;
*((float*) d_fpr) = *((float *)pStackLongs), d_fpr++, fpr++;
}
else {
*((sal_Int64*) d_ov) = 0;
*((float*) d_ov ) = *((float *)pStackLongs), d_ov++;
}
pStackLongs += 1;
break;
case 'H': /* type is long long */
if (gpr < 4) {
*((sal_Int64*) d_gpr) = *((sal_Int64*) pStackLongs), d_gpr+=2, gpr+=2;
}
else {
*((sal_Int64*) d_ov ) = *((sal_Int64*) pStackLongs), d_ov+=2, gpr=5;
}
pStackLongs += 2;
break;
case 'S':
if (gpr < 5)
*((sal_uInt32*)d_gpr) = *((unsigned short*)pStackLongs), d_gpr++, gpr++;
else
*((sal_uInt32*)d_ov ) = *((unsigned short*)pStackLongs), d_ov++;
pStackLongs += 1;
break;
case 'T':
if (gpr < 5)
*((sal_Int32*)d_gpr) = *((signed short*)pStackLongs), d_gpr++, gpr++;
else
*((sal_Int32*)d_ov ) = *((signed short*)pStackLongs), d_ov++;
pStackLongs += 1;
break;
case 'B':
if (gpr < 5)
*((sal_uInt32*)d_gpr) = *((unsigned char*)pStackLongs), d_gpr++, gpr++;
else
*((sal_uInt32*)d_ov ) = *((unsigned char*)pStackLongs), d_ov++;
pStackLongs += 1;
break;
case 'C':
if (gpr < 5)
*((sal_Int32*)d_gpr) = *((signed char*)pStackLongs), d_gpr++, gpr++;
else
*((sal_Int32*)d_ov ) = *((signed char*)pStackLongs), d_ov++;
pStackLongs += 1;
break;
default:
if (gpr < 5)
*((sal_Int32*)d_gpr) = *pStackLongs, d_gpr++, gpr++;
else
*((sal_Int32*)d_ov ) = *pStackLongs, d_ov++;
pStackLongs += 1;
break;
}
pPT++;
}
}
//==================================================================================================
static void callVirtualMethod(
void * pThis,
sal_Int32 nVtableIndex,
void * pRegisterReturn,
typelib_TypeClass eReturnType,
char * pPT,
sal_Int32 * pStackLongs,
sal_Int32 nStackLongs)
{
// parameter list is mixed list of * and values
// reference parameters are pointers
// the basic idea here is to use gpr[5] as a storage area for
// the future values of registers r2 to r6 needed for the call,
// and similarly fpr[2] as a storage area for the future values
// of floating point registers f0 to f2
sal_Int32 *vtable = *(sal_Int32 **)pThis;
// sal_Int32 method = vtable[nVtableIndex + 2];
sal_Int32 method = vtable[nVtableIndex];
sal_Int32 overflow = invoke_count_words (pPT);
sal_Int32 result;
volatile double dret; // temporary function return values
volatile float fret;
volatile int iret, iret2;
void * dummy = alloca(32); // dummy alloca to force r11 usage for exception handling
__asm__ __volatile__
(
"lr 7,15\n\t"
"ahi 7,-48\n\t"
"lr 3,%2\n\t"
"sll 3,2\n\t"
"lcr 3,3\n\t"
"l 2,0(15)\n\t"
"la 15,0(3,7)\n\t"
"st 2,0(15)\n\t"
"lr 2,%0\n\t"
"lr 3,%1\n\t"
"la 4,96(15)\n\t"
"lr 5,%2\n\t"
"basr 14,%3\n\t"
"ld 0,116(7)\n\t"
"ld 2,124(7)\n\t"
"lm 2,6,96(7)\n\t"
:
: "r" (pStackLongs),
"r" (pPT),
"r" (overflow),
"a" (invoke_copy_to_stack),
"a" (method),
"X" (dummy)
: "2", "3", "4", "5", "6", "7", "memory"
);
// "basr 14,%8\n\t"
(*(void (*)())method)();
__asm__ __volatile__
(
"la 15,48(7)\n\t"
"lr %2,2\n\t"
"lr %3,3\n\t"
"ler %0,0\n\t"
"ldr %1,0\n\t"
: "=f" (fret), "=f" (dret), "=r" (iret), "=r" (iret2)
);
switch( eReturnType )
{
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
// ((long*)pRegisterReturn)[0] = iret;
((long*)pRegisterReturn)[1] = iret2;
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_ENUM:
((long*)pRegisterReturn)[0] = iret;
break;
case typelib_TypeClass_CHAR:
case typelib_TypeClass_SHORT:
case typelib_TypeClass_UNSIGNED_SHORT:
*(unsigned short*)pRegisterReturn = (unsigned short)iret;
break;
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
*(unsigned char*)pRegisterReturn = (unsigned char)iret;
break;
case typelib_TypeClass_FLOAT:
*(float*)pRegisterReturn = fret;
break;
case typelib_TypeClass_DOUBLE:
*(double*)pRegisterReturn = dret;
break;
}
}
//============================================================================
static void cpp_call(
bridges::cpp_uno::shared::UnoInterfaceProxy * pThis,
bridges::cpp_uno::shared::VtableSlot aVtableSlot,
typelib_TypeDescriptionReference * pReturnTypeRef,
sal_Int32 nParams, typelib_MethodParameter * pParams,
void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc )
{
// max space for: [complex ret ptr], values|ptr ...
char * pCppStack =
(char *)alloca( sizeof(sal_Int32) + ((nParams+2) * sizeof(sal_Int64)) );
char * pCppStackStart = pCppStack;
// need to know parameter types for callVirtualMethod so generate a signature string
char * pParamType = (char *) alloca(nParams+2);
char * pPT = pParamType;
// return
typelib_TypeDescription * pReturnTypeDescr = 0;
TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef );
OSL_ENSURE( pReturnTypeDescr, "### expected return type description!" );
void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion
if (pReturnTypeDescr)
{
if (bridges::cpp_uno::shared::isSimpleType( pReturnTypeDescr ))
{
pCppReturn = pUnoReturn; // direct way for simple types
}
else
{
// complex return via ptr
pCppReturn = *(void **)pCppStack = (bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr )
? alloca( pReturnTypeDescr->nSize )
: pUnoReturn); // direct way
*pPT++ = 'I'; //signify that a complex return type on stack
pCppStack += sizeof(void *);
}
}
// push "this" pointer
void * pAdjustedThisPtr = reinterpret_cast< void ** >( pThis->getCppI() ) + aVtableSlot.offset;
*(void**)pCppStack = pAdjustedThisPtr;
pCppStack += sizeof( void* );
*pPT++ = 'I';
// stack space
OSL_ENSURE( sizeof(void *) == sizeof(sal_Int32), "### unexpected size!" );
// args
void ** pCppArgs = (void **)alloca( 3 * sizeof(void *) * nParams );
// indizes of values this have to be converted (interface conversion cpp<=>uno)
sal_Int32 * pTempIndizes = (sal_Int32 *)(pCppArgs + nParams);
// type descriptions for reconversions
typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams));
sal_Int32 nTempIndizes = 0;
for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos )
{
const typelib_MethodParameter & rParam = pParams[nPos];
typelib_TypeDescription * pParamTypeDescr = 0;
TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef );
if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr ))
{
uno_copyAndConvertData( pCppArgs[nPos] = pCppStack, pUnoArgs[nPos], pParamTypeDescr,
pThis->getBridge()->getUno2Cpp() );
switch (pParamTypeDescr->eTypeClass)
{
// we need to know type of each param so that we know whether to use
// gpr or fpr to pass in parameters:
// Key: I - int, long, pointer, etc means pass in gpr
// B - byte value passed in gpr
// S - short value passed in gpr
// F - float value pass in fpr
// D - double value pass in fpr
// H - long long int pass in proper pairs of gpr (3,4) (5,6), etc
// X - indicates end of parameter description string
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_ENUM:
*pPT++ = 'I';
break;
case typelib_TypeClass_SHORT:
*pPT++ = 'T';
break;
case typelib_TypeClass_CHAR:
case typelib_TypeClass_UNSIGNED_SHORT:
*pPT++ = 'S';
break;
case typelib_TypeClass_BOOLEAN:
*pPT++ = 'B';
break;
case typelib_TypeClass_BYTE:
*pPT++ = 'C';
break;
case typelib_TypeClass_FLOAT:
*pPT++ = 'F';
break;
case typelib_TypeClass_DOUBLE:
*pPT++ = 'D';
pCppStack += sizeof(sal_Int32); // extra long
break;
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
*pPT++ = 'H';
pCppStack += sizeof(sal_Int32); // extra long
}
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
else // ptr to complex value | ref
{
if (! rParam.bIn) // is pure out
{
// cpp out is constructed mem, uno out is not!
uno_constructData(
*(void **)pCppStack = pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pParamTypeDescr );
pTempIndizes[nTempIndizes] = nPos; // default constructed for cpp call
// will be released at reconversion
ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr;
}
// is in/inout
else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr ))
{
uno_copyAndConvertData(
*(void **)pCppStack = pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() );
pTempIndizes[nTempIndizes] = nPos; // has to be reconverted
// will be released at reconversion
ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr;
}
else // direct way
{
*(void **)pCppStack = pCppArgs[nPos] = pUnoArgs[nPos];
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
// KBH: FIXME: is this the right way to pass these
*pPT++='I';
}
pCppStack += sizeof(sal_Int32); // standard parameter length
}
// terminate the signature string
*pPT++='X';
*pPT=0;
try
{
OSL_ENSURE( !( (pCppStack - pCppStackStart ) & 3), "UNALIGNED STACK !!! (Please DO panic)" );
callVirtualMethod(
pAdjustedThisPtr, aVtableSlot.index,
pCppReturn, pReturnTypeDescr->eTypeClass, pParamType,
(sal_Int32 *)pCppStackStart, (pCppStack - pCppStackStart) / sizeof(sal_Int32) );
// NO exception occured...
*ppUnoExc = 0;
// reconvert temporary params
for ( ; nTempIndizes--; )
{
sal_Int32 nIndex = pTempIndizes[nTempIndizes];
typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndizes];
if (pParams[nIndex].bIn)
{
if (pParams[nIndex].bOut) // inout
{
uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
}
}
else // pure out
{
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
}
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release );
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
// return value
if (pCppReturn && pUnoReturn != pCppReturn)
{
uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr,
pThis->getBridge()->getCpp2Uno() );
uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release );
}
}
catch (...)
{
// fill uno exception
fillUnoException( CPPU_CURRENT_NAMESPACE::__cxa_get_globals()->caughtExceptions,
*ppUnoExc, pThis->getBridge()->getCpp2Uno() );
// temporary params
for ( ; nTempIndizes--; )
{
sal_Int32 nIndex = pTempIndizes[nTempIndizes];
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndizes], cpp_release );
TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndizes] );
}
// return type
if (pReturnTypeDescr)
TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
}
}
}
namespace bridges { namespace cpp_uno { namespace shared {
void unoInterfaceProxyDispatch(
uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr,
void * pReturn, void * pArgs[], uno_Any ** ppException )
{
#ifdef CMC_DEBUG
fprintf(stderr, "unoInterfaceProxyDispatch\n");
#endif
// is my surrogate
bridges::cpp_uno::shared::UnoInterfaceProxy * pThis
= static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy *> (pUnoI);
typelib_InterfaceTypeDescription * pTypeDescr = pThis->pTypeDescr;
switch (pMemberDescr->eTypeClass)
{
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
{
VtableSlot aVtableSlot(
getVtableSlot(
reinterpret_cast<
typelib_InterfaceAttributeTypeDescription const * >(
pMemberDescr)));
if (pReturn)
{
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef,
0, 0, // no params
pReturn, pArgs, ppException );
}
else
{
// is SET
typelib_MethodParameter aParam;
aParam.pTypeRef =
((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef;
aParam.bIn = sal_True;
aParam.bOut = sal_False;
typelib_TypeDescriptionReference * pReturnTypeRef = 0;
OUString aVoidName( RTL_CONSTASCII_USTRINGPARAM("void") );
typelib_typedescriptionreference_new(
&pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData );
// dependent dispatch
aVtableSlot.index += 1; //get then set method
cpp_call(
pThis, aVtableSlot,
pReturnTypeRef,
1, &aParam,
pReturn, pArgs, ppException );
typelib_typedescriptionreference_release( pReturnTypeRef );
}
break;
}
case typelib_TypeClass_INTERFACE_METHOD:
{
VtableSlot aVtableSlot(
getVtableSlot(
reinterpret_cast<
typelib_InterfaceMethodTypeDescription const * >(
pMemberDescr)));
switch (aVtableSlot.index)
{
// standard calls
case 1: // acquire uno interface
(*pUnoI->acquire)( pUnoI );
*ppException = 0;
break;
case 2: // release uno interface
(*pUnoI->release)( pUnoI );
*ppException = 0;
break;
case 0: // queryInterface() opt
{
typelib_TypeDescription * pTD = 0;
TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() );
if (pTD)
{
uno_Interface * pInterface = 0;
(*pThis->pBridge->getUnoEnv()->getRegisteredInterface)(
pThis->pBridge->getUnoEnv(),
(void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD );
if (pInterface)
{
::uno_any_construct(
reinterpret_cast< uno_Any * >( pReturn ),
&pInterface, pTD, 0 );
(*pInterface->release)( pInterface );
TYPELIB_DANGER_RELEASE( pTD );
*ppException = 0;
break;
}
TYPELIB_DANGER_RELEASE( pTD );
}
} // else perform queryInterface()
default:
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams,
pReturn, pArgs, ppException );
}
break;
}
default:
{
::com::sun::star::uno::RuntimeException aExc(
OUString( RTL_CONSTASCII_USTRINGPARAM("illegal member type description!") ),
::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() );
Type const & rExcType = ::getCppuType( &aExc );
// binary identical null reference
::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 );
}
}
}
} } }
/* vi:set tabstop=4 shiftwidth=4 expandtab: */