blob: 496abc935cc0b52101aa0273b84a555c3d2fbf96 [file] [log] [blame]
/**************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_bridges.hxx"
#include <malloc.h>
#include <com/sun/star/uno/genfunc.hxx>
#include <uno/data.h>
#include "bridges/cpp_uno/shared/bridge.hxx"
#include "bridges/cpp_uno/shared/types.hxx"
#include "bridges/cpp_uno/shared/unointerfaceproxy.hxx"
#include "bridges/cpp_uno/shared/vtables.hxx"
#include "share.hxx"
using namespace ::rtl;
using namespace ::com::sun::star::uno;
namespace
{
//==================================================================================================
static void callVirtualMethod(
void * pAdjustedThisPtr,
sal_Int32 nVtableIndex,
void * pRegisterReturn,
typelib_TypeClass eReturnType,
char * pPT,
sal_Int32 * pStackLongs,
sal_Int32 nStackLongs)
{
// parameter list is mixed list of * and values
// reference parameters are pointers
// the basic idea here is to use gpr[8] as a storage area for
// the future values of registers r3 to r10 needed for the call,
// and similarly fpr[8] as a storage area for the future values
// of floating point registers f1 to f8
unsigned long * mfunc; // actual function to be invoked
void (*ptr)();
int gpr[8]; // storage for gpregisters, map to r3-r10
int off; // offset used to find function
#ifndef __NO_FPRS__
double fpr[8]; // storage for fpregisters, map to f1-f8
int f; // number of fprs mapped so far
double dret; // temporary function return values
#endif
int n; // number of gprs mapped so far
long *p; // pointer to parameter overflow area
int c; // character of parameter type being decoded
int iret, iret2;
// Because of the Power PC calling conventions we could be passing
// parameters in both register types and on the stack. To create the
// stack parameter area we need we now simply allocate local
// variable storage param[] that is at least the size of the parameter stack
// (more than enough space) which we can overwrite the parameters into.
// Note: This keeps us from having to decode the signature twice and
// prevents problems with later local variables.
// Note: could require up to 2*nStackLongs words of parameter stack area
// if the call has many float parameters (i.e. floats take up only 1
// word on the stack but double takes 2 words in parameter area in the
// stack frame .
// Update! floats on the outgoing parameter stack only take up 1 word
// (stfs is used) which is not correct according to the ABI but we
// will match what the compiler does until this is figured out
// this grows the current stack to the appropriate size
// and sets the outgoing stack pointer p to the right place
__asm__ __volatile__ (
"rlwinm %0,%0,3,3,28\n\t"
"addi %0,%0,22\n\t"
"rlwinm %0,%0,0,4,28\n\t"
"lwz 0,0(1)\n\t"
"subf 1,%0,1\n\t"
"stw 0,0(1)\n\t"
: : "r" (nStackLongs) : "0" );
__asm__ __volatile__ ( "addi %0,1,8" : "=r" (p) : );
// never called
// if (! pAdjustedThisPtr ) dummy_can_throw_anything("xxx"); // address something
// now begin to load the C++ function arguments into storage
n = 0;
#ifndef __NO_FPRS__
f = 0;
#endif
// now we need to parse the entire signature string */
// until we get the END indicator */
// treat complex return pointer like any other parameter //
#if 0
/* Let's figure out what is really going on here*/
fprintf(stderr,"callVirtualMethod paramters string is %s\n",pPT);
int k = nStackLongs;
long * q = (long *)pStackLongs;
while (k > 0) {
fprintf(stderr,"uno stack is: %x\n",*q);
k--;
q++;
}
#endif
/* parse the argument list up to the ending ) */
while (*pPT != 'X') {
c = *pPT;
switch (c) {
case 'D': /* type is double */
#ifndef __NO_FPRS__
if (f < 8) {
fpr[f++] = *((double *)pStackLongs); /* store in register */
#else
if (n & 1)
n++;
if (n < 8) {
gpr[n++] = *pStackLongs;
gpr[n++] = *(pStackLongs+1);
#endif
} else {
if (((long) p) & 4)
p++;
*p++ = *pStackLongs; /* or on the parameter stack */
*p++ = *(pStackLongs + 1);
}
pStackLongs += 2;
break;
case 'F': /* type is float */
/* this assumes that floats are stored as 1 32 bit word on param
stack and that if passed in parameter stack to C, should be
as double word.
Whoops: the abi is not actually followed by gcc, need to
store floats as a *single* word on outgoing parameter stack
to match what gcc actually does
*/
#ifndef __NO_FPRS__
if (f < 8) {
fpr[f++] = *((float *)pStackLongs);
#else
if (n < 8) {
gpr[n++] = *pStackLongs;
#endif
} else {
#if 0 /* if abi were followed */
if (((long) p) & 4)
p++;
*((double *)p) = *((float *)pStackLongs);
p += 2;
#else
*((float *)p) = *((float *)pStackLongs);
p += 1;
#endif
}
pStackLongs += 1;
break;
case 'H': /* type is long long */
if (n & 1) n++; /* note even elements gpr[] will map to
odd registers*/
if (n <= 6) {
gpr[n++] = *pStackLongs;
gpr[n++] = *(pStackLongs+1);
} else {
if (((long) p) & 4)
p++;
*p++ = *pStackLongs;
*p++ = *(pStackLongs+1);
}
pStackLongs += 2;
break;
case 'S':
if (n < 8) {
gpr[n++] = *((unsigned short*)pStackLongs);
} else {
*p++ = *((unsigned short *)pStackLongs);
}
pStackLongs += 1;
break;
case 'B':
if (n < 8) {
gpr[n++] = *((char *)pStackLongs);
} else {
*p++ = *((char *)pStackLongs);
}
pStackLongs += 1;
break;
default:
if (n < 8) {
gpr[n++] = *pStackLongs;
} else {
*p++ = *pStackLongs;
}
pStackLongs += 1;
break;
}
pPT++;
}
/* figure out the address of the function we need to invoke */
off = nVtableIndex;
off = off * 4; // 4 bytes per slot
mfunc = *((unsigned long **)pAdjustedThisPtr); // get the address of the vtable
mfunc = (unsigned long *)((char *)mfunc + off); // get the address from the vtable entry at offset
mfunc = *((unsigned long **)mfunc); // the function is stored at the address
ptr = (void (*)())mfunc;
/* Set up the machine registers and invoke the function */
__asm__ __volatile__ (
"lwz 3, 0(%0)\n\t"
"lwz 4, 4(%0)\n\t"
"lwz 5, 8(%0)\n\t"
"lwz 6, 12(%0)\n\t"
"lwz 7, 16(%0)\n\t"
"lwz 8, 20(%0)\n\t"
"lwz 9, 24(%0)\n\t"
"lwz 10, 28(%0)\n\t"
#ifndef __NO_FPRS__
"lfd 1, 0(%1)\n\t"
"lfd 2, 8(%1)\n\t"
"lfd 3, 16(%1)\n\t"
"lfd 4, 24(%1)\n\t"
"lfd 5, 32(%1)\n\t"
"lfd 6, 40(%1)\n\t"
"lfd 7, 48(%1)\n\t"
"lfd 8, 56(%1)\n\t"
: : "r" (gpr), "r" (fpr)
#else
: : "r" (gpr)
#endif
: "0", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"
);
(*ptr)();
__asm__ __volatile__ (
"mr %0, 3\n\t"
"mr %1, 4\n\t"
#ifndef __NO_FPRS__
"fmr %2, 1\n\t"
: "=r" (iret), "=r" (iret2), "=f" (dret)
#else
: "=r" (iret), "=r" (iret2)
#endif
: );
switch( eReturnType )
{
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
((long*)pRegisterReturn)[0] = iret;
((long*)pRegisterReturn)[1] = iret2;
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_ENUM:
((long*)pRegisterReturn)[0] = iret;
break;
case typelib_TypeClass_CHAR:
case typelib_TypeClass_SHORT:
case typelib_TypeClass_UNSIGNED_SHORT:
*(unsigned short*)pRegisterReturn = (unsigned short)iret;
break;
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
*(unsigned char*)pRegisterReturn = (unsigned char)iret;
break;
case typelib_TypeClass_FLOAT:
#ifndef __NO_FPRS__
*(float*)pRegisterReturn = (float)dret;
#else
((unsigned int*)pRegisterReturn)[0] = iret;
#endif
break;
case typelib_TypeClass_DOUBLE:
#ifndef __NO_FPRS__
*(double*)pRegisterReturn = dret;
#else
((unsigned int*)pRegisterReturn)[0] = iret;
((unsigned int*)pRegisterReturn)[1] = iret2;
#endif
break;
default:
break;
}
}
//==================================================================================================
static void cpp_call(
bridges::cpp_uno::shared::UnoInterfaceProxy * pThis,
bridges::cpp_uno::shared::VtableSlot aVtableSlot,
typelib_TypeDescriptionReference * pReturnTypeRef,
sal_Int32 nParams, typelib_MethodParameter * pParams,
void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc )
{
// max space for: [complex ret ptr], values|ptr ...
char * pCppStack =
(char *)alloca( sizeof(sal_Int32) + ((nParams+2) * sizeof(sal_Int64)) );
char * pCppStackStart = pCppStack;
// need to know parameter types for callVirtualMethod so generate a signature string
char * pParamType = (char *) alloca(nParams+2);
char * pPT = pParamType;
// return
typelib_TypeDescription * pReturnTypeDescr = 0;
TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef );
// OSL_ENSURE( pReturnTypeDescr, "### expected return type description!" );
void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion
if (pReturnTypeDescr)
{
if (bridges::cpp_uno::shared::isSimpleType( pReturnTypeDescr ))
{
pCppReturn = pUnoReturn; // direct way for simple types
}
else
{
// complex return via ptr
pCppReturn = *(void **)pCppStack =
(bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr )
? alloca( pReturnTypeDescr->nSize ): pUnoReturn); // direct way
*pPT++ = 'I'; //signify that a complex return type on stack
pCppStack += sizeof(void *);
}
}
// push this
void* pAdjustedThisPtr = reinterpret_cast< void **>(pThis->getCppI()) + aVtableSlot.offset;
*(void**)pCppStack = pAdjustedThisPtr;
pCppStack += sizeof( void* );
*pPT++ = 'I';
// stack space
// OSL_ENSURE( sizeof(void *) == sizeof(sal_Int32), "### unexpected size!" );
// args
void ** pCppArgs = (void **)alloca( 3 * sizeof(void *) * nParams );
// indizes of values this have to be converted (interface conversion cpp<=>uno)
sal_Int32 * pTempIndizes = (sal_Int32 *)(pCppArgs + nParams);
// type descriptions for reconversions
typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams));
sal_Int32 nTempIndizes = 0;
for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos )
{
const typelib_MethodParameter & rParam = pParams[nPos];
typelib_TypeDescription * pParamTypeDescr = 0;
TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef );
if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr ))
{
uno_copyAndConvertData( pCppArgs[nPos] = pCppStack, pUnoArgs[nPos], pParamTypeDescr,
pThis->getBridge()->getUno2Cpp() );
switch (pParamTypeDescr->eTypeClass)
{
// we need to know type of each param so that we know whether to use
// gpr or fpr to pass in parameters:
// Key: I - int, long, pointer, etc means pass in gpr
// B - byte value passed in gpr
// S - short value passed in gpr
// F - float value pass in fpr
// D - double value pass in fpr
// H - long long int pass in proper pairs of gpr (3,4) (5,6), etc
// X - indicates end of parameter description string
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_ENUM:
*pPT++ = 'I';
break;
case typelib_TypeClass_SHORT:
case typelib_TypeClass_CHAR:
case typelib_TypeClass_UNSIGNED_SHORT:
*pPT++ = 'S';
break;
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
*pPT++ = 'B';
break;
case typelib_TypeClass_FLOAT:
*pPT++ = 'F';
break;
case typelib_TypeClass_DOUBLE:
*pPT++ = 'D';
pCppStack += sizeof(sal_Int32); // extra long
break;
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
*pPT++ = 'H';
pCppStack += sizeof(sal_Int32); // extra long
default:
break;
}
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
else // ptr to complex value | ref
{
if (! rParam.bIn) // is pure out
{
// cpp out is constructed mem, uno out is not!
uno_constructData(
*(void **)pCppStack = pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pParamTypeDescr );
pTempIndizes[nTempIndizes] = nPos; // default constructed for cpp call
// will be released at reconversion
ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr;
}
// is in/inout
else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr ))
{
uno_copyAndConvertData(
*(void **)pCppStack = pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pUnoArgs[nPos], pParamTypeDescr,
pThis->getBridge()->getUno2Cpp() );
pTempIndizes[nTempIndizes] = nPos; // has to be reconverted
// will be released at reconversion
ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr;
}
else // direct way
{
*(void **)pCppStack = pCppArgs[nPos] = pUnoArgs[nPos];
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
// KBH: FIXME: is this the right way to pass these
*pPT++='I';
}
pCppStack += sizeof(sal_Int32); // standard parameter length
}
// terminate the signature string
*pPT++='X';
*pPT=0;
try
{
OSL_ENSURE( !( (pCppStack - pCppStackStart ) & 3), "UNALIGNED STACK !!! (Please DO panic)" );
callVirtualMethod(
pAdjustedThisPtr, aVtableSlot.index,
pCppReturn, pReturnTypeDescr->eTypeClass, pParamType,
(sal_Int32 *)pCppStackStart, (pCppStack - pCppStackStart) / sizeof(sal_Int32) );
// NO exception occured...
*ppUnoExc = 0;
// reconvert temporary params
for ( ; nTempIndizes--; )
{
sal_Int32 nIndex = pTempIndizes[nTempIndizes];
typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndizes];
if (pParams[nIndex].bIn)
{
if (pParams[nIndex].bOut) // inout
{
uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
}
}
else // pure out
{
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
}
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release );
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
// return value
if (pCppReturn && pUnoReturn != pCppReturn)
{
uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr,
pThis->getBridge()->getCpp2Uno() );
uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release );
}
}
catch (...)
{
// fill uno exception
fillUnoException( CPPU_CURRENT_NAMESPACE::__cxa_get_globals()->caughtExceptions,
*ppUnoExc, pThis->getBridge()->getCpp2Uno() );
// temporary params
for ( ; nTempIndizes--; )
{
sal_Int32 nIndex = pTempIndizes[nTempIndizes];
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndizes], cpp_release );
TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndizes] );
}
// return type
if (pReturnTypeDescr)
TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
}
}
}
namespace bridges { namespace cpp_uno { namespace shared {
void unoInterfaceProxyDispatch(
uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr,
void * pReturn, void * pArgs[], uno_Any ** ppException )
{
// is my surrogate
bridges::cpp_uno::shared::UnoInterfaceProxy * pThis
= static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy *> (pUnoI);
switch (pMemberDescr->eTypeClass)
{
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
{
VtableSlot aVtableSlot(
getVtableSlot(
reinterpret_cast<
typelib_InterfaceAttributeTypeDescription const * >(
pMemberDescr)));
if (pReturn)
{
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef,
0, 0, // no params
pReturn, pArgs, ppException );
}
else
{
// is SET
typelib_MethodParameter aParam;
aParam.pTypeRef =
((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef;
aParam.bIn = sal_True;
aParam.bOut = sal_False;
typelib_TypeDescriptionReference * pReturnTypeRef = 0;
OUString aVoidName( RTL_CONSTASCII_USTRINGPARAM("void") );
typelib_typedescriptionreference_new(
&pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData );
// dependent dispatch
aVtableSlot.index += 1; //get then set method
cpp_call(
pThis, aVtableSlot,
pReturnTypeRef,
1, &aParam,
pReturn, pArgs, ppException );
typelib_typedescriptionreference_release( pReturnTypeRef );
}
break;
}
case typelib_TypeClass_INTERFACE_METHOD:
{
VtableSlot aVtableSlot(
getVtableSlot(
reinterpret_cast<
typelib_InterfaceMethodTypeDescription const * >(
pMemberDescr)));
switch (aVtableSlot.index)
{
// standard calls
case 1: // acquire uno interface
(*pUnoI->acquire)( pUnoI );
*ppException = 0;
break;
case 2: // release uno interface
(*pUnoI->release)( pUnoI );
*ppException = 0;
break;
case 0: // queryInterface() opt
{
typelib_TypeDescription * pTD = 0;
TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() );
if (pTD)
{
uno_Interface * pInterface = 0;
(*pThis->pBridge->getUnoEnv()->getRegisteredInterface)(
pThis->pBridge->getUnoEnv(),
(void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD );
if (pInterface)
{
::uno_any_construct(
reinterpret_cast< uno_Any * >( pReturn ),
&pInterface, pTD, 0 );
(*pInterface->release)( pInterface );
TYPELIB_DANGER_RELEASE( pTD );
*ppException = 0;
break;
}
TYPELIB_DANGER_RELEASE( pTD );
}
} // else perform queryInterface()
default:
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams,
pReturn, pArgs, ppException );
}
break;
}
default:
{
::com::sun::star::uno::RuntimeException aExc(
OUString( RTL_CONSTASCII_USTRINGPARAM("illegal member type description!") ),
::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() );
Type const & rExcType = ::getCppuType( &aExc );
// binary identical null reference
::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 );
}
}
}
} } }