blob: d1f3933e821d2f2254be750e2989a97ebadbafb5 [file] [log] [blame]
/**************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_bridges.hxx"
#include <malloc.h>
#include <com/sun/star/uno/genfunc.hxx>
#include <uno/data.h>
#include "bridges/cpp_uno/shared/bridge.hxx"
#include "bridges/cpp_uno/shared/types.hxx"
#include "bridges/cpp_uno/shared/unointerfaceproxy.hxx"
#include "bridges/cpp_uno/shared/vtables.hxx"
#include "share.hxx"
#include <stdio.h>
#include <string.h>
using namespace ::rtl;
using namespace ::com::sun::star::uno;
void MapReturn(const ia64::RegReturn &rRet, double dret, typelib_TypeDescription * pReturnTypeDescr, bool bSimpleReturn, sal_uInt64 *pRegisterReturn)
{
switch (pReturnTypeDescr->eTypeClass)
{
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_ENUM:
*pRegisterReturn = rRet.r8;
break;
case typelib_TypeClass_CHAR:
case typelib_TypeClass_SHORT:
case typelib_TypeClass_UNSIGNED_SHORT:
*pRegisterReturn = (unsigned short)rRet.r8;
break;
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
*pRegisterReturn = (unsigned char)rRet.r8;
break;
case typelib_TypeClass_FLOAT:
*reinterpret_cast<float *>( pRegisterReturn ) = dret;
break;
case typelib_TypeClass_DOUBLE:
*reinterpret_cast<double *>( pRegisterReturn ) = dret;
break;
case typelib_TypeClass_STRUCT:
case typelib_TypeClass_EXCEPTION:
{
sal_uInt32 nRetSize = pReturnTypeDescr->nSize;
if (bSimpleReturn && nRetSize <= 32 && nRetSize > 0)
memcpy(pRegisterReturn, (void*)&rRet, nRetSize);
break;
}
default:
break;
}
}
namespace ia64
{
bool is_complex_struct(const typelib_TypeDescription * type)
{
const typelib_CompoundTypeDescription * p
= reinterpret_cast< const typelib_CompoundTypeDescription * >(type);
for (sal_Int32 i = 0; i < p->nMembers; ++i)
{
if (p->ppTypeRefs[i]->eTypeClass == typelib_TypeClass_STRUCT ||
p->ppTypeRefs[i]->eTypeClass == typelib_TypeClass_EXCEPTION)
{
typelib_TypeDescription * t = 0;
TYPELIB_DANGER_GET(&t, p->ppTypeRefs[i]);
bool b = is_complex_struct(t);
TYPELIB_DANGER_RELEASE(t);
if (b) {
return true;
}
}
else if (!bridges::cpp_uno::shared::isSimpleType(p->ppTypeRefs[i]->eTypeClass))
return true;
}
if (p->pBaseTypeDescription != 0)
return is_complex_struct(&p->pBaseTypeDescription->aBase);
return false;
}
bool is_complex_struct( typelib_TypeDescriptionReference *pTypeRef )
{
if (pTypeRef->eTypeClass == typelib_TypeClass_STRUCT || pTypeRef->eTypeClass == typelib_TypeClass_EXCEPTION)
{
typelib_TypeDescription * pTypeDescr = 0;
TYPELIB_DANGER_GET( &pTypeDescr, pTypeRef );
bool bRet = is_complex_struct( pTypeDescr );
TYPELIB_DANGER_RELEASE( pTypeDescr );
return bRet;
}
return false;
}
bool return_via_r8_buffer( typelib_TypeDescriptionReference *pTypeRef )
{
if (pTypeRef->eTypeClass == typelib_TypeClass_STRUCT || pTypeRef->eTypeClass == typelib_TypeClass_EXCEPTION)
{
if (is_complex_struct( pTypeRef )) return false;
typelib_TypeDescription * pTypeDescr = 0;
TYPELIB_DANGER_GET( &pTypeDescr, pTypeRef );
/* If the struct is larger than 32 bytes, then there is a buffer at r8 to stick the return value into */
bool bRet = pTypeDescr->nSize > 32;
TYPELIB_DANGER_RELEASE( pTypeDescr );
return bRet;
}
return false;
}
bool return_in_hidden_param( typelib_TypeDescriptionReference *pTypeRef )
{
if (bridges::cpp_uno::shared::isSimpleType(pTypeRef))
return false;
else if (pTypeRef->eTypeClass == typelib_TypeClass_STRUCT || pTypeRef->eTypeClass == typelib_TypeClass_EXCEPTION)
return is_complex_struct( pTypeRef );
return true;
}
}
namespace
{
//==================================================================================================
static void callVirtualMethod(void * pThis, sal_uInt32 nVtableIndex,
void * pRegisterReturn, typelib_TypeDescription * pReturnTypeDescr, bool bSimpleReturn,
sal_uInt64 *pStack, sal_uInt32 nStack,
sal_uInt64 *pGPR, sal_uInt32 nGPR,
double *pFPR, sal_uInt32 nFPR)
{
// Stack, if used, must be 16-bytes aligned
if ( nStack )
nStack = ( nStack + 1 ) & ~1;
// Should not happen, but...
if ( nFPR > ia64::MAX_SSE_REGS )
nFPR = ia64::MAX_SSE_REGS;
if ( nGPR > ia64::MAX_GPR_REGS )
nGPR = ia64::MAX_GPR_REGS;
#ifdef CMC_DEBUG
// Let's figure out what is really going on here
{
fprintf( stderr, "= callVirtualMethod() =\nGPR's (%d): ", nGPR );
for ( unsigned int i = 0; i < nGPR; ++i )
fprintf( stderr, "0x%lx, ", pGPR[i] );
fprintf( stderr, "\nFPR's (%d): ", nFPR );
for ( unsigned int i = 0; i < nFPR; ++i )
fprintf( stderr, "0x%lx (%f), ", pFPR[i], pFPR[i] );
fprintf( stderr, "\nStack (%d): ", nStack );
for ( unsigned int i = 0; i < nStack; ++i )
fprintf( stderr, "0x%lx, ", pStack[i] );
fprintf( stderr, "\n" );
fprintf( stderr, "pRegisterReturn is %p\n", pRegisterReturn);
}
#endif
// Load parameters to stack, if necessary
sal_uInt64 *stack = (sal_uInt64 *) __builtin_alloca( nStack * 8 );
memcpy( stack, pStack, nStack * 8 );
// To get pointer to method
// a) get the address of the vtable
sal_uInt64 pMethod = *((sal_uInt64 *)pThis);
// b) get the address from the vtable entry at offset, each entry is 16bytes,
// 8 for function pointer, and 8 for global pointer
pMethod += 16 * nVtableIndex;
typedef void (* FunctionCall )( sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64 );
FunctionCall pFunc = (FunctionCall)pMethod;
switch (nFPR) //deliberate fall through
{
case 8:
asm volatile("ldfd f15=%0" : : "m"(pFPR[7]) : "f15");
case 7:
asm volatile("ldfd f14=%0" : : "m"(pFPR[6]) : "f14");
case 6:
asm volatile("ldfd f13=%0" : : "m"(pFPR[5]) : "f13");
case 5:
asm volatile("ldfd f12=%0" : : "m"(pFPR[4]) : "f12");
case 4:
asm volatile("ldfd f11=%0" : : "m"(pFPR[3]) : "f11");
case 3:
asm volatile("ldfd f10=%0" : : "m"(pFPR[2]) : "f10");
case 2:
asm volatile("ldfd f9=%0" : : "m"(pFPR[1]) : "f9");
case 1:
asm volatile("ldfd f8=%0" : : "m"(pFPR[0]) : "f8");
default:
break;
}
//stick the return area into r8 for big struct returning
asm volatile("ld8 r8=%0" : : "m"(pRegisterReturn) : "r8");
(*pFunc)(pGPR[0], pGPR[1], pGPR[2], pGPR[3], pGPR[4], pGPR[5], pGPR[6], pGPR[7]);
register double f8 asm("f8");
ia64::RegReturn ret;
{
register long r8 asm("r8"); ret.r8 = r8;
register long r9 asm("r9"); ret.r9 = r9;
register long r10 asm("r10"); ret.r10 = r10;
register long r11 asm("r11"); ret.r11 = r11;
}
MapReturn(ret, f8, pReturnTypeDescr, bSimpleReturn, (sal_uInt64*)pRegisterReturn);
}
// Macros for easier insertion of values to registers or stack
// pSV - pointer to the source
// nr - order of the value [will be increased if stored to register]
// pFPR, pGPR - pointer to the registers
// pDS - pointer to the stack [will be increased if stored here]
// The value in %xmm register is already prepared to be retrieved as a float,
// thus we treat float and double the same
#define INSERT_FLOAT( pSV, nfr, pFPR, ngr, pGPR, pDS, bOverflow ) \
if ( nfr < ia64::MAX_SSE_REGS && ngr < ia64::MAX_GPR_REGS ) \
pFPR[nfr++] = *reinterpret_cast<float *>( pSV ); \
if ( ngr < ia64::MAX_GPR_REGS ) \
pGPR[ngr++] = *reinterpret_cast<sal_uInt64 *>( pSV ); \
else \
bOverFlow = true; \
if (bOverFlow) \
*pDS++ = *reinterpret_cast<sal_uInt64 *>( pSV ); // verbatim!
#define INSERT_DOUBLE( pSV, nfr, pFPR, ngr, pGPR, pDS, bOverflow ) \
if ( nfr < ia64::MAX_SSE_REGS && ngr < ia64::MAX_GPR_REGS ) \
pFPR[nfr++] = *reinterpret_cast<double *>( pSV ); \
if ( ngr < ia64::MAX_GPR_REGS ) \
pGPR[ngr++] = *reinterpret_cast<sal_uInt64 *>( pSV ); \
else \
bOverFlow = true; \
if (bOverFlow) \
*pDS++ = *reinterpret_cast<sal_uInt64 *>( pSV ); // verbatim!
#define INSERT_INT64( pSV, nr, pGPR, pDS, bOverflow ) \
if ( nr < ia64::MAX_GPR_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_uInt64 *>( pSV ); \
else \
bOverFlow = true; \
if (bOverFlow) \
*pDS++ = *reinterpret_cast<sal_uInt64 *>( pSV );
#define INSERT_INT32( pSV, nr, pGPR, pDS, bOverflow ) \
if ( nr < ia64::MAX_GPR_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_uInt32 *>( pSV ); \
else \
bOverFlow = true; \
if (bOverFlow) \
*pDS++ = *reinterpret_cast<sal_uInt32 *>( pSV );
#define INSERT_INT16( pSV, nr, pGPR, pDS, bOverflow ) \
if ( nr < ia64::MAX_GPR_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_uInt16 *>( pSV ); \
else \
bOverFlow = true; \
if (bOverFlow) \
*pDS++ = *reinterpret_cast<sal_uInt16 *>( pSV );
#define INSERT_INT8( pSV, nr, pGPR, pDS, bOverflow ) \
if ( nr < ia64::MAX_GPR_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_uInt8 *>( pSV ); \
else \
bOverFlow = true; \
if (bOverFlow) \
*pDS++ = *reinterpret_cast<sal_uInt8 *>( pSV );
//==================================================================================================
static void cpp_call(
bridges::cpp_uno::shared::UnoInterfaceProxy * pThis,
bridges::cpp_uno::shared::VtableSlot aVtableSlot,
typelib_TypeDescriptionReference * pReturnTypeRef,
sal_Int32 nParams, typelib_MethodParameter * pParams,
void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc )
{
// max space for: [complex ret ptr], values|ptr ...
sal_uInt64 * pStack = (sal_uInt64 *)alloca( (nParams+3) * sizeof(sal_Int64) );
sal_uInt64 * pStackStart = pStack;
sal_uInt64 pGPR[ia64::MAX_GPR_REGS];
sal_uInt32 nGPR = 0;
double pFPR[ia64::MAX_SSE_REGS];
sal_uInt32 nFPR = 0;
// return
typelib_TypeDescription * pReturnTypeDescr = 0;
TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef );
OSL_ENSURE( pReturnTypeDescr, "### expected return type description!" );
void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion
bool bOverFlow = false;
bool bSimpleReturn = true;
if (pReturnTypeDescr)
{
#ifdef CMC_DEBUG
fprintf(stderr, "return type is %d\n", pReturnTypeDescr->eTypeClass);
#endif
if ( ia64::return_in_hidden_param(pReturnTypeRef) || ia64::return_via_r8_buffer(pReturnTypeRef) )
bSimpleReturn = false;
if ( bSimpleReturn )
{
pCppReturn = pUnoReturn; // direct way for simple types
#ifdef CMC_DEBUG
fprintf(stderr, "simple return\n");
#endif
}
else
{
// complex return via ptr
pCppReturn = (bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr )
? alloca( pReturnTypeDescr->nSize ) : pUnoReturn);
#ifdef CMC_DEBUG
fprintf(stderr, "pCppReturn/pUnoReturn is %lx/%lx", pCppReturn, pUnoReturn);
#endif
if (!ia64::return_via_r8_buffer(pReturnTypeRef))
INSERT_INT64( &pCppReturn, nGPR, pGPR, pStack, bOverFlow );
}
}
// push "this" pointer
void * pAdjustedThisPtr = reinterpret_cast< void ** >( pThis->getCppI() ) + aVtableSlot.offset;
#ifdef CMC_DEBUG
fprintf(stderr, "this pointer is %p\n", pAdjustedThisPtr);
#endif
INSERT_INT64( &pAdjustedThisPtr, nGPR, pGPR, pStack, bOverFlow );
// Args
void ** pCppArgs = (void **)alloca( 3 * sizeof(void *) * nParams );
// indizes of values this have to be converted (interface conversion cpp<=>uno)
sal_Int32 * pTempIndizes = (sal_Int32 *)(pCppArgs + nParams);
// type descriptions for reconversions
typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams));
sal_Int32 nTempIndizes = 0;
#ifdef CMC_DEBUG
fprintf(stderr, "n params is %d\n", nParams);
#endif
for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos )
{
const typelib_MethodParameter & rParam = pParams[nPos];
typelib_TypeDescription * pParamTypeDescr = 0;
TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef );
#ifdef CMC_DEBUG
fprintf(stderr, "param %d is %d %d %d\n", nPos, rParam.bOut, bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr ),
pParamTypeDescr->eTypeClass);
#endif
if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr ))
{
// uno_copyAndConvertData( pCppArgs[nPos] = alloca( 8 ), pUnoArgs[nPos], pParamTypeDescr,
uno_copyAndConvertData( pCppArgs[nPos] = pStack, pUnoArgs[nPos], pParamTypeDescr,
pThis->getBridge()->getUno2Cpp() );
switch (pParamTypeDescr->eTypeClass)
{
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
#ifdef CMC_DEBUG
fprintf(stderr, "hyper is %lx\n", *(unsigned long*)(pCppArgs[nPos]));
#endif
INSERT_INT64( pCppArgs[nPos], nGPR, pGPR, pStack, bOverFlow );
break;
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_ENUM:
#ifdef CMC_DEBUG
fprintf(stderr, "long is %lx\n", *(unsigned int*)(pCppArgs[nPos]));
#endif
INSERT_INT32( pCppArgs[nPos], nGPR, pGPR, pStack, bOverFlow );
break;
case typelib_TypeClass_SHORT:
case typelib_TypeClass_CHAR:
case typelib_TypeClass_UNSIGNED_SHORT:
#ifdef CMC_DEBUG
fprintf(stderr, "short is %x\n", *(unsigned short*)(pCppArgs[nPos]));
#endif
INSERT_INT16( pCppArgs[nPos], nGPR, pGPR, pStack, bOverFlow );
break;
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
#ifdef CMC_DEBUG
fprintf(stderr, "byte is %x\n", *(unsigned char*)(pCppArgs[nPos]));
#endif
INSERT_INT8( pCppArgs[nPos], nGPR, pGPR, pStack, bOverFlow );
break;
case typelib_TypeClass_FLOAT:
#ifdef CMC_DEBUG
fprintf(stderr, "a float is %f\n", *(float*)(pCppArgs[nPos]));
fprintf(stderr, "b float is %f\n", *(double*)(pCppArgs[nPos]));
#endif
INSERT_FLOAT( pCppArgs[nPos], nFPR, pFPR, nGPR, pGPR, pStack, bOverFlow );
break;
case typelib_TypeClass_DOUBLE:
#ifdef CMC_DEBUG
fprintf(stderr, "double is %f\n", *(double*)(pCppArgs[nPos]));
#endif
INSERT_DOUBLE( pCppArgs[nPos], nFPR, pFPR, nGPR, pGPR, pStack, bOverFlow );
break;
default:
break;
}
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
else // ptr to complex value | ref
{
#ifdef CMC_DEBUG
fprintf(stderr, "complex type again %d\n", rParam.bIn);
#endif
if (! rParam.bIn) // is pure out
{
#ifdef CMC_DEBUG
fprintf(stderr, "complex size is %d\n", pParamTypeDescr->nSize );
#endif
// cpp out is constructed mem, uno out is not!
uno_constructData(
pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pParamTypeDescr );
pTempIndizes[nTempIndizes] = nPos; // default constructed for cpp call
// will be released at reconversion
ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr;
}
// is in/inout
else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr ))
{
#ifdef CMC_DEBUG
fprintf(stderr, "this one\n");
#endif
uno_copyAndConvertData(
pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() );
pTempIndizes[nTempIndizes] = nPos; // has to be reconverted
// will be released at reconversion
ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr;
}
else // direct way
{
#ifdef CMC_DEBUG
fprintf(stderr, "that one, passing %lx through\n", pUnoArgs[nPos]);
#endif
pCppArgs[nPos] = pUnoArgs[nPos];
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
INSERT_INT64( &(pCppArgs[nPos]), nGPR, pGPR, pStack, bOverFlow );
}
}
try
{
callVirtualMethod(
pAdjustedThisPtr, aVtableSlot.index,
pCppReturn, pReturnTypeDescr, bSimpleReturn,
pStackStart, ( pStack - pStackStart ),
pGPR, nGPR,
pFPR, nFPR );
// NO exception occured...
*ppUnoExc = 0;
// reconvert temporary params
for ( ; nTempIndizes--; )
{
sal_Int32 nIndex = pTempIndizes[nTempIndizes];
typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndizes];
if (pParams[nIndex].bIn)
{
if (pParams[nIndex].bOut) // inout
{
uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
}
}
else // pure out
{
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
}
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release );
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
// return value
if (pCppReturn && pUnoReturn != pCppReturn)
{
uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr,
pThis->getBridge()->getCpp2Uno() );
uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release );
}
}
catch (...)
{
// fill uno exception
fillUnoException( CPPU_CURRENT_NAMESPACE::__cxa_get_globals()->caughtExceptions,
*ppUnoExc, pThis->getBridge()->getCpp2Uno() );
// temporary params
for ( ; nTempIndizes--; )
{
sal_Int32 nIndex = pTempIndizes[nTempIndizes];
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndizes], cpp_release );
TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndizes] );
}
// return type
if (pReturnTypeDescr)
TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
}
}
}
namespace bridges { namespace cpp_uno { namespace shared {
void unoInterfaceProxyDispatch(
uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr,
void * pReturn, void * pArgs[], uno_Any ** ppException )
{
// is my surrogate
bridges::cpp_uno::shared::UnoInterfaceProxy * pThis
= static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy *> (pUnoI);
switch (pMemberDescr->eTypeClass)
{
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
{
VtableSlot aVtableSlot(
getVtableSlot(
reinterpret_cast<
typelib_InterfaceAttributeTypeDescription const * >(
pMemberDescr)));
if (pReturn)
{
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef,
0, 0, // no params
pReturn, pArgs, ppException );
}
else
{
// is SET
typelib_MethodParameter aParam;
aParam.pTypeRef =
((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef;
aParam.bIn = sal_True;
aParam.bOut = sal_False;
typelib_TypeDescriptionReference * pReturnTypeRef = 0;
OUString aVoidName( RTL_CONSTASCII_USTRINGPARAM("void") );
typelib_typedescriptionreference_new(
&pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData );
// dependent dispatch
aVtableSlot.index += 1; //get then set method
cpp_call(
pThis, aVtableSlot,
pReturnTypeRef,
1, &aParam,
pReturn, pArgs, ppException );
typelib_typedescriptionreference_release( pReturnTypeRef );
}
break;
}
case typelib_TypeClass_INTERFACE_METHOD:
{
VtableSlot aVtableSlot(
getVtableSlot(
reinterpret_cast<
typelib_InterfaceMethodTypeDescription const * >(
pMemberDescr)));
switch (aVtableSlot.index)
{
// standard calls
case 1: // acquire uno interface
(*pUnoI->acquire)( pUnoI );
*ppException = 0;
break;
case 2: // release uno interface
(*pUnoI->release)( pUnoI );
*ppException = 0;
break;
case 0: // queryInterface() opt
{
typelib_TypeDescription * pTD = 0;
TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() );
if (pTD)
{
uno_Interface * pInterface = 0;
(*pThis->pBridge->getUnoEnv()->getRegisteredInterface)(
pThis->pBridge->getUnoEnv(),
(void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD );
if (pInterface)
{
::uno_any_construct(
reinterpret_cast< uno_Any * >( pReturn ),
&pInterface, pTD, 0 );
(*pInterface->release)( pInterface );
TYPELIB_DANGER_RELEASE( pTD );
*ppException = 0;
break;
}
TYPELIB_DANGER_RELEASE( pTD );
}
} // else perform queryInterface()
default:
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams,
pReturn, pArgs, ppException );
}
break;
}
default:
{
::com::sun::star::uno::RuntimeException aExc(
OUString( RTL_CONSTASCII_USTRINGPARAM("illegal member type description!") ),
::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() );
Type const & rExcType = ::getCppuType( &aExc );
// binary identical null reference
::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 );
}
}
}
} } }
/* vi:set tabstop=4 shiftwidth=4 expandtab: */