blob: c82446258d20535c859390dca0784e857b061f3d [file] [log] [blame]
/**************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_bridges.hxx"
#include <malloc.h>
#include <com/sun/star/uno/genfunc.hxx>
#include <uno/data.h>
#include "bridges/cpp_uno/shared/bridge.hxx"
#include "bridges/cpp_uno/shared/types.hxx"
#include "bridges/cpp_uno/shared/unointerfaceproxy.hxx"
#include "bridges/cpp_uno/shared/vtables.hxx"
#include "share.hxx"
#include <stdio.h>
#include <string.h>
using namespace ::rtl;
using namespace ::com::sun::star::uno;
void MapReturn(long r0, typelib_TypeClass eTypeClass, sal_uInt64* pRegisterReturn)
{
register float fret asm("$f0");
register double dret asm("$f0");
#ifdef CMC_DEBUG
fprintf(stderr,"Mapping Return with %lx %ld %f\n", r0, r0, dret);
#endif
switch (eTypeClass)
{
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
*pRegisterReturn = r0;
break;
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_ENUM:
*(unsigned int*)pRegisterReturn = (unsigned int)r0;
break;
case typelib_TypeClass_CHAR:
case typelib_TypeClass_SHORT:
case typelib_TypeClass_UNSIGNED_SHORT:
*(unsigned short*)pRegisterReturn = (unsigned short)r0;
break;
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
*(unsigned char*)pRegisterReturn = (unsigned char)r0;
break;
case typelib_TypeClass_FLOAT:
*reinterpret_cast<float *>( pRegisterReturn ) = fret;
break;
case typelib_TypeClass_DOUBLE:
*reinterpret_cast<double *>( pRegisterReturn ) = dret;
break;
default:
break;
}
#ifdef CMC_DEBUG
fprintf(stderr, "end of MapReturn with %x\n", pRegisterReturn ? *pRegisterReturn : 0);
#endif
}
#define INSERT_FLOAT( pSV, nr, pFPR, pDS ) \
{ \
if ( nr < axp::MAX_WORDS_IN_REGS ) \
{ \
pFPR[nr++] = *reinterpret_cast<float *>( pSV ); \
} \
else \
*pDS++ = *reinterpret_cast<sal_uInt64 *>( pSV ); \
}
#define INSERT_DOUBLE( pSV, nr, pFPR, pDS ) \
if ( nr < axp::MAX_WORDS_IN_REGS ) \
pFPR[nr++] = *reinterpret_cast<double *>( pSV ); \
else \
*pDS++ = *reinterpret_cast<sal_uInt64 *>( pSV ); // verbatim!
#define INSERT_INT64( pSV, nr, pGPR, pDS ) \
if ( nr < axp::MAX_WORDS_IN_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_uInt64 *>( pSV ); \
else \
*pDS++ = *reinterpret_cast<sal_uInt64 *>( pSV );
#define INSERT_INT32( pSV, nr, pGPR, pDS ) \
if ( nr < axp::MAX_WORDS_IN_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_uInt32 *>( pSV ); \
else \
*pDS++ = *reinterpret_cast<sal_uInt32 *>( pSV );
#define INSERT_INT16( pSV, nr, pGPR, pDS ) \
if ( nr < axp::MAX_WORDS_IN_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_uInt16 *>( pSV ); \
else \
*pDS++ = *reinterpret_cast<sal_uInt16 *>( pSV );
#define INSERT_INT8( pSV, nr, pGPR, pDS ) \
if ( nr < axp::MAX_WORDS_IN_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_uInt8 *>( pSV ); \
else \
*pDS++ = *reinterpret_cast<sal_uInt8 *>( pSV );
namespace
{
//==================================================================================================
void callVirtualMethod(
void * pThis, sal_Int32 nVtableIndex,
void * pRegisterReturn, typelib_TypeDescription * pReturnTypeDescr,
sal_uInt64 *pStack, sal_uInt32 nStack,
sal_uInt64 *pGPR, sal_uInt32 nGPR,
double *pFPR, sal_uInt32 nFPR)
{
// Should not happen, but...
if ( nFPR > axp::MAX_SSE_REGS )
nFPR = axp::MAX_SSE_REGS;
if ( nGPR > axp::MAX_GPR_REGS )
nGPR = axp::MAX_GPR_REGS;
#ifdef CMC_DEBUG
// Let's figure out what is really going on here
{
fprintf( stderr, "= nStack is %d\n", nStack );
fprintf( stderr, "= callVirtualMethod() =\nGPR's (%d): ", nGPR );
for ( unsigned int i = 0; i < nGPR; ++i )
fprintf( stderr, "0x%lx, ", pGPR[i] );
fprintf( stderr, "\nFPR's (%d): ", nFPR );
for ( unsigned int i = 0; i < nFPR; ++i )
fprintf( stderr, "0x%lx (%f), ", pFPR[i], pFPR[i] );
fprintf( stderr, "\nStack (%d): ", nStack );
for ( unsigned int i = 0; i < nStack; ++i )
fprintf( stderr, "0x%lx, ", pStack[i] );
fprintf( stderr, "\n" );
fprintf( stderr, "pRegisterReturn is %p\n", pRegisterReturn);
}
#endif
// Load parameters to stack, if necessary
// Stack, if used, must be 8-bytes aligned
sal_uInt64 *stack = (sal_uInt64 *) __builtin_alloca( nStack * 8 );
memcpy( stack, pStack, nStack * 8 );
// To get pointer to method
// a) get the address of the vtable
sal_uInt64 pMethod = *((sal_uInt64 *)pThis);
// b) get the address from the vtable entry at offset
pMethod += 8 * nVtableIndex;
pMethod = *((sal_uInt64 *)pMethod);
typedef void (* FunctionCall )( sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64 );
FunctionCall pFunc = (FunctionCall)pMethod;
switch (nFPR) //deliberate fall through
{
case 6:
asm volatile("ldt $f16,%0" :: "m"(pFPR[5]) : "$f16");
case 5:
asm volatile("ldt $f17,%0" :: "m"(pFPR[4]) : "$f17");
case 4:
asm volatile("ldt $f18,%0" :: "m"(pFPR[3]) : "$f18");
case 3:
asm volatile("ldt $f19,%0" :: "m"(pFPR[2]) : "$f19");
case 2:
asm volatile("ldt $f20,%0" :: "m"(pFPR[1]) : "$f20");
case 1:
asm volatile("ldt $f21,%0" :: "m"(pFPR[0]) : "$f21");
default:
break;
}
(*pFunc)(pGPR[0], pGPR[1], pGPR[2], pGPR[3], pGPR[4], pGPR[5]);
register sal_uInt64 r0 __asm__("$0");
MapReturn(r0, pReturnTypeDescr->eTypeClass, (sal_uInt64*)pRegisterReturn);
}
//============================================================================
static void cpp_call(
bridges::cpp_uno::shared::UnoInterfaceProxy * pThis,
bridges::cpp_uno::shared::VtableSlot aVtableSlot,
typelib_TypeDescriptionReference * pReturnTypeRef,
sal_Int32 nParams, typelib_MethodParameter * pParams,
void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc )
{
// max space for: [complex ret ptr], values|ptr ...
sal_uInt64 * pStack = (sal_uInt64 *)alloca( (nParams+3) * sizeof(sal_Int64) );
sal_uInt64 * pStackStart = pStack;
sal_uInt64 pGPR[axp::MAX_GPR_REGS];
double pFPR[axp::MAX_SSE_REGS];
sal_uInt32 nRegs = 0;
// return
typelib_TypeDescription * pReturnTypeDescr = 0;
TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef );
OSL_ENSURE( pReturnTypeDescr, "### expected return type description!" );
void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion
if (pReturnTypeDescr)
{
if (bridges::cpp_uno::shared::isSimpleType( pReturnTypeDescr ))
{
pCppReturn = pUnoReturn; // direct way for simple types
}
else
{
// complex return via ptr
pCppReturn = (bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr )
? alloca( pReturnTypeDescr->nSize )
: pUnoReturn); // direct way
INSERT_INT64( &pCppReturn, nRegs, pGPR, pStack );
}
}
// push "this" pointer
void * pAdjustedThisPtr = reinterpret_cast< void ** >( pThis->getCppI() ) + aVtableSlot.offset;
INSERT_INT64( &pAdjustedThisPtr, nRegs, pGPR, pStack );
// stack space
OSL_ENSURE( sizeof(void *) == sizeof(sal_Int64), "### unexpected size!" );
// args
void ** pCppArgs = (void **)alloca( 3 * sizeof(void *) * nParams );
// indizes of values this have to be converted (interface conversion cpp<=>uno)
sal_Int32 * pTempIndizes = (sal_Int32 *)(pCppArgs + nParams);
// type descriptions for reconversions
typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams));
sal_Int32 nTempIndizes = 0;
for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos )
{
const typelib_MethodParameter & rParam = pParams[nPos];
typelib_TypeDescription * pParamTypeDescr = 0;
TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef );
if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr ))
{
uno_copyAndConvertData( pCppArgs[nPos] = alloca( 8 ), pUnoArgs[nPos], pParamTypeDescr,
pThis->getBridge()->getUno2Cpp() );
switch (pParamTypeDescr->eTypeClass)
{
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
INSERT_INT64( pCppArgs[nPos], nRegs, pGPR, pStack );
break;
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_ENUM:
INSERT_INT32( pCppArgs[nPos], nRegs, pGPR, pStack );
break;
case typelib_TypeClass_SHORT:
case typelib_TypeClass_CHAR:
case typelib_TypeClass_UNSIGNED_SHORT:
INSERT_INT16( pCppArgs[nPos], nRegs, pGPR, pStack );
break;
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
INSERT_INT8( pCppArgs[nPos], nRegs, pGPR, pStack );
break;
case typelib_TypeClass_FLOAT:
INSERT_FLOAT( pCppArgs[nPos], nRegs, pFPR, pStack );
break;
case typelib_TypeClass_DOUBLE:
INSERT_DOUBLE( pCppArgs[nPos], nRegs, pFPR, pStack );
break;
default:
break;
}
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
else // ptr to complex value | ref
{
if (! rParam.bIn) // is pure out
{
// cpp out is constructed mem, uno out is not!
uno_constructData(
pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pParamTypeDescr );
pTempIndizes[nTempIndizes] = nPos; // default constructed for cpp call
// will be released at reconversion
ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr;
}
// is in/inout
else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr ))
{
uno_copyAndConvertData(
pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() );
pTempIndizes[nTempIndizes] = nPos; // has to be reconverted
// will be released at reconversion
ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr;
}
else // direct way
{
pCppArgs[nPos] = pUnoArgs[nPos];
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
INSERT_INT64( &(pCppArgs[nPos]), nRegs, pGPR, pStack );
}
}
try
{
callVirtualMethod(
pAdjustedThisPtr, aVtableSlot.index,
pCppReturn, pReturnTypeDescr,
pStackStart, (pStack - pStackStart),
pGPR, nRegs,
pFPR, nRegs );
// NO exception occured...
*ppUnoExc = 0;
// reconvert temporary params
for ( ; nTempIndizes--; )
{
sal_Int32 nIndex = pTempIndizes[nTempIndizes];
typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndizes];
if (pParams[nIndex].bIn)
{
if (pParams[nIndex].bOut) // inout
{
uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
}
}
else // pure out
{
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
}
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release );
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
// return value
if (pCppReturn && pUnoReturn != pCppReturn)
{
uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr,
pThis->getBridge()->getCpp2Uno() );
uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release );
}
}
catch (...)
{
// fill uno exception
fillUnoException( CPPU_CURRENT_NAMESPACE::__cxa_get_globals()->caughtExceptions,
*ppUnoExc, pThis->getBridge()->getCpp2Uno() );
// temporary params
for ( ; nTempIndizes--; )
{
sal_Int32 nIndex = pTempIndizes[nTempIndizes];
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndizes], cpp_release );
TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndizes] );
}
// return type
if (pReturnTypeDescr)
TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
}
}
}
namespace bridges { namespace cpp_uno { namespace shared {
void unoInterfaceProxyDispatch(
uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr,
void * pReturn, void * pArgs[], uno_Any ** ppException )
{
#ifdef CMC_DEBUG
fprintf(stderr, "unoInterfaceProxyDispatch\n");
#endif
// is my surrogate
bridges::cpp_uno::shared::UnoInterfaceProxy * pThis
= static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy *> (pUnoI);
switch (pMemberDescr->eTypeClass)
{
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
{
VtableSlot aVtableSlot(
getVtableSlot(
reinterpret_cast<
typelib_InterfaceAttributeTypeDescription const * >(
pMemberDescr)));
if (pReturn)
{
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef,
0, 0, // no params
pReturn, pArgs, ppException );
}
else
{
// is SET
typelib_MethodParameter aParam;
aParam.pTypeRef =
((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef;
aParam.bIn = sal_True;
aParam.bOut = sal_False;
typelib_TypeDescriptionReference * pReturnTypeRef = 0;
OUString aVoidName( RTL_CONSTASCII_USTRINGPARAM("void") );
typelib_typedescriptionreference_new(
&pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData );
// dependent dispatch
aVtableSlot.index += 1; //get then set method
cpp_call(
pThis, aVtableSlot,
pReturnTypeRef,
1, &aParam,
pReturn, pArgs, ppException );
typelib_typedescriptionreference_release( pReturnTypeRef );
}
break;
}
case typelib_TypeClass_INTERFACE_METHOD:
{
VtableSlot aVtableSlot(
getVtableSlot(
reinterpret_cast<
typelib_InterfaceMethodTypeDescription const * >(
pMemberDescr)));
switch (aVtableSlot.index)
{
// standard calls
case 1: // acquire uno interface
(*pUnoI->acquire)( pUnoI );
*ppException = 0;
break;
case 2: // release uno interface
(*pUnoI->release)( pUnoI );
*ppException = 0;
break;
case 0: // queryInterface() opt
{
typelib_TypeDescription * pTD = 0;
TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() );
if (pTD)
{
uno_Interface * pInterface = 0;
(*pThis->pBridge->getUnoEnv()->getRegisteredInterface)(
pThis->pBridge->getUnoEnv(),
(void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD );
if (pInterface)
{
::uno_any_construct(
reinterpret_cast< uno_Any * >( pReturn ),
&pInterface, pTD, 0 );
(*pInterface->release)( pInterface );
TYPELIB_DANGER_RELEASE( pTD );
*ppException = 0;
break;
}
TYPELIB_DANGER_RELEASE( pTD );
}
} // else perform queryInterface()
default:
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams,
pReturn, pArgs, ppException );
}
break;
}
default:
{
::com::sun::star::uno::RuntimeException aExc(
OUString( RTL_CONSTASCII_USTRINGPARAM("illegal member type description!") ),
::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() );
Type const & rExcType = ::getCppuType( &aExc );
// binary identical null reference
::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 );
}
}
}
} } }
/* vi:set tabstop=4 shiftwidth=4 expandtab: */