blob: 05d1fa2a2cdbc0eb14978783e626ad9f4b3626c1 [file] [log] [blame]
/**************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_bridges.hxx"
#include <exception>
#include <typeinfo>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "rtl/alloc.h"
#include "rtl/ustrbuf.hxx"
#include <com/sun/star/uno/genfunc.hxx>
#include "com/sun/star/uno/RuntimeException.hpp"
#include <uno/data.h>
#include <bridges/cpp_uno/shared/bridge.hxx>
#include <bridges/cpp_uno/shared/types.hxx>
#include "bridges/cpp_uno/shared/unointerfaceproxy.hxx"
#include "bridges/cpp_uno/shared/vtables.hxx"
#include "abi.hxx"
#include "share.hxx"
using namespace ::rtl;
using namespace ::com::sun::star::uno;
//==================================================================================================
static void callVirtualMethod(void * pThis, sal_uInt32 nVtableIndex,
void * pRegisterReturn, typelib_TypeDescriptionReference * pReturnTypeRef, bool bSimpleReturn,
sal_uInt64 *pStack, sal_uInt32 nStack,
sal_uInt64 *pGPR, sal_uInt32 nGPR,
double *pFPR, sal_uInt32 nFPR) __attribute__((noinline));
static void callVirtualMethod(void * pThis, sal_uInt32 nVtableIndex,
void * pRegisterReturn, typelib_TypeDescriptionReference * pReturnTypeRef, bool bSimpleReturn,
sal_uInt64 *pStack, sal_uInt32 nStack,
sal_uInt64 *pGPR, sal_uInt32 nGPR,
double *pFPR, sal_uInt32 nFPR)
{
#if OSL_DEBUG_LEVEL > 1
// Let's figure out what is really going on here
{
fprintf( stderr, "= callVirtualMethod() =\nGPR's (%d): ", nGPR );
for ( unsigned int i = 0; i < nGPR; ++i )
fprintf( stderr, "0x%lx, ", pGPR[i] );
fprintf( stderr, "\nFPR's (%d): ", nFPR );
for ( unsigned int i = 0; i < nFPR; ++i )
fprintf( stderr, "%f, ", pFPR[i] );
fprintf( stderr, "\nStack (%d): ", nStack );
for ( unsigned int i = 0; i < nStack; ++i )
fprintf( stderr, "0x%lx, ", pStack[i] );
fprintf( stderr, "\n" );
}
#endif
// The call instruction within the asm section of callVirtualMethod may throw
// exceptions. So that the compiler handles this correctly, it is important
// that (a) callVirtualMethod might call dummy_can_throw_anything (although this
// never happens at runtime), which in turn can throw exceptions, and (b)
// callVirtualMethod is not inlined at its call site (so that any exceptions are
// caught which are thrown from the instruction calling callVirtualMethod):
if ( !pThis )
CPPU_CURRENT_NAMESPACE::dummy_can_throw_anything( "xxx" ); // address something
// Should not happen, but...
if ( nFPR > x86_64::MAX_SSE_REGS )
nFPR = x86_64::MAX_SSE_REGS;
if ( nGPR > x86_64::MAX_GPR_REGS )
nGPR = x86_64::MAX_GPR_REGS;
// Get pointer to method
sal_uInt64 pMethod = *((sal_uInt64 *)pThis);
pMethod += 8 * nVtableIndex;
pMethod = *((sal_uInt64 *)pMethod);
// Load parameters to stack, if necessary
sal_uInt64* pCallStack = NULL;
if ( nStack )
{
// 16-bytes aligned
sal_uInt32 nStackBytes = ( ( nStack + 1 ) >> 1 ) * 16;
pCallStack = (sal_uInt64*) __builtin_alloca( nStackBytes );
memcpy( pCallStack, pStack, nStackBytes );
}
// Return values
sal_uInt64 rax;
sal_uInt64 rdx;
double xmm0;
double xmm1;
asm volatile (
// Fill the xmm registers
"movq %2, %%rax\n\t"
"movsd (%%rax), %%xmm0\n\t"
"movsd 8(%%rax), %%xmm1\n\t"
"movsd 16(%%rax), %%xmm2\n\t"
"movsd 24(%%rax), %%xmm3\n\t"
"movsd 32(%%rax), %%xmm4\n\t"
"movsd 40(%%rax), %%xmm5\n\t"
"movsd 48(%%rax), %%xmm6\n\t"
"movsd 56(%%rax), %%xmm7\n\t"
// Fill the general purpose registers
"movq %1, %%rax\n\t"
"movq (%%rax), %%rdi\n\t"
"movq 8(%%rax), %%rsi\n\t"
"movq 16(%%rax), %%rdx\n\t"
"movq 24(%%rax), %%rcx\n\t"
"movq 32(%%rax), %%r8\n\t"
"movq 40(%%rax), %%r9\n\t"
// Perform the call
"movq %0, %%r11\n\t"
"movq %3, %%rax\n\t"
"call *%%r11\n\t"
// Fill the return values
"movq %%rax, %4\n\t"
"movq %%rdx, %5\n\t"
"movsd %%xmm0, %6\n\t"
"movsd %%xmm1, %7\n\t"
:
: "m" ( pMethod ), "m" ( pGPR ), "m" ( pFPR ), "m" ( nFPR ),
"m" ( rax ), "m" ( rdx ), "m" ( xmm0 ), "m" ( xmm1 ),
"m" (pCallStack) // dummy input to prevent the compiler from optimizing the alloca out
: "rax", "rdi", "rsi", "rdx", "rcx", "r8", "r9", "r11"
);
switch (pReturnTypeRef->eTypeClass)
{
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
*reinterpret_cast<sal_uInt64 *>( pRegisterReturn ) = rax;
break;
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_ENUM:
*reinterpret_cast<sal_uInt32 *>( pRegisterReturn ) = *reinterpret_cast<sal_uInt32*>( &rax );
break;
case typelib_TypeClass_CHAR:
case typelib_TypeClass_SHORT:
case typelib_TypeClass_UNSIGNED_SHORT:
*reinterpret_cast<sal_uInt16 *>( pRegisterReturn ) = *reinterpret_cast<sal_uInt16*>( &rax );
break;
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
*reinterpret_cast<sal_uInt8 *>( pRegisterReturn ) = *reinterpret_cast<sal_uInt8*>( &rax );
break;
case typelib_TypeClass_FLOAT:
case typelib_TypeClass_DOUBLE:
*reinterpret_cast<double *>( pRegisterReturn ) = xmm0;
break;
default:
{
sal_Int32 const nRetSize = pReturnTypeRef->pType->nSize;
if (bSimpleReturn && nRetSize <= 16 && nRetSize > 0)
{
sal_uInt64 longs[2];
longs[0] = rax;
longs[1] = rdx;
double doubles[2];
doubles[0] = xmm0;
doubles[1] = xmm1;
x86_64::fill_struct( pReturnTypeRef, &longs[0], &doubles[0], pRegisterReturn);
}
break;
}
}
}
//==================================================================================================
// Macros for easier insertion of values to registers or stack
// pSV - pointer to the source
// nr - order of the value [will be increased if stored to register]
// pFPR, pGPR - pointer to the registers
// pDS - pointer to the stack [will be increased if stored here]
// The value in %xmm register is already prepared to be retrieved as a float,
// thus we treat float and double the same
#define INSERT_FLOAT_DOUBLE( pSV, nr, pFPR, pDS ) \
if ( nr < x86_64::MAX_SSE_REGS ) \
pFPR[nr++] = *reinterpret_cast<double *>( pSV ); \
else \
*pDS++ = *reinterpret_cast<sal_uInt64 *>( pSV ); // verbatim!
#define INSERT_INT64( pSV, nr, pGPR, pDS ) \
if ( nr < x86_64::MAX_GPR_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_uInt64 *>( pSV ); \
else \
*pDS++ = *reinterpret_cast<sal_uInt64 *>( pSV );
#define INSERT_INT32( pSV, nr, pGPR, pDS ) \
if ( nr < x86_64::MAX_GPR_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_uInt32 *>( pSV ); \
else \
*pDS++ = *reinterpret_cast<sal_uInt32 *>( pSV );
#define INSERT_INT16( pSV, nr, pGPR, pDS ) \
if ( nr < x86_64::MAX_GPR_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_uInt16 *>( pSV ); \
else \
*pDS++ = *reinterpret_cast<sal_uInt16 *>( pSV );
#define INSERT_INT8( pSV, nr, pGPR, pDS ) \
if ( nr < x86_64::MAX_GPR_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_uInt8 *>( pSV ); \
else \
*pDS++ = *reinterpret_cast<sal_uInt8 *>( pSV );
//==================================================================================================
namespace {
void appendCString(OUStringBuffer & buffer, char const * text) {
if (text != 0) {
buffer.append(
OStringToOUString(OString(text), RTL_TEXTENCODING_ISO_8859_1));
// use 8859-1 to avoid conversion failure
}
}
}
static void cpp_call(
bridges::cpp_uno::shared::UnoInterfaceProxy * pThis,
bridges::cpp_uno::shared::VtableSlot aVtableSlot,
typelib_TypeDescriptionReference * pReturnTypeRef,
sal_Int32 nParams, typelib_MethodParameter * pParams,
void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc )
{
// Maxium space for [complex ret ptr], values | ptr ...
// (but will be used less - some of the values will be in pGPR and pFPR)
sal_uInt64 *pStack = (sal_uInt64 *)__builtin_alloca( (nParams + 3) * sizeof(sal_uInt64) );
sal_uInt64 *pStackStart = pStack;
sal_uInt64 pGPR[x86_64::MAX_GPR_REGS];
sal_uInt32 nGPR = 0;
double pFPR[x86_64::MAX_SSE_REGS];
sal_uInt32 nFPR = 0;
// Return
typelib_TypeDescription * pReturnTypeDescr = 0;
TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef );
OSL_ENSURE( pReturnTypeDescr, "### expected return type description!" );
void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion (see below)
bool bSimpleReturn = true;
if ( pReturnTypeDescr )
{
if ( x86_64::return_in_hidden_param( pReturnTypeRef ) )
bSimpleReturn = false;
if ( bSimpleReturn )
pCppReturn = pUnoReturn; // direct way for simple types
else
{
// complex return via ptr
pCppReturn = bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr )?
__builtin_alloca( pReturnTypeDescr->nSize ) : pUnoReturn;
INSERT_INT64( &pCppReturn, nGPR, pGPR, pStack );
}
}
// Push "this" pointer
void * pAdjustedThisPtr = reinterpret_cast< void ** >( pThis->getCppI() ) + aVtableSlot.offset;
INSERT_INT64( &pAdjustedThisPtr, nGPR, pGPR, pStack );
// Args
void ** pCppArgs = (void **)alloca( 3 * sizeof(void *) * nParams );
// Indizes of values this have to be converted (interface conversion cpp<=>uno)
sal_Int32 * pTempIndizes = (sal_Int32 *)(pCppArgs + nParams);
// Type descriptions for reconversions
typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams));
sal_Int32 nTempIndizes = 0;
for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos )
{
const typelib_MethodParameter & rParam = pParams[nPos];
typelib_TypeDescription * pParamTypeDescr = 0;
TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef );
if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr ))
{
uno_copyAndConvertData( pCppArgs[nPos] = alloca( 8 ), pUnoArgs[nPos], pParamTypeDescr,
pThis->getBridge()->getUno2Cpp() );
switch (pParamTypeDescr->eTypeClass)
{
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
INSERT_INT64( pCppArgs[nPos], nGPR, pGPR, pStack );
break;
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_ENUM:
INSERT_INT32( pCppArgs[nPos], nGPR, pGPR, pStack );
break;
case typelib_TypeClass_SHORT:
case typelib_TypeClass_CHAR:
case typelib_TypeClass_UNSIGNED_SHORT:
INSERT_INT16( pCppArgs[nPos], nGPR, pGPR, pStack );
break;
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
INSERT_INT8( pCppArgs[nPos], nGPR, pGPR, pStack );
break;
case typelib_TypeClass_FLOAT:
case typelib_TypeClass_DOUBLE:
INSERT_FLOAT_DOUBLE( pCppArgs[nPos], nFPR, pFPR, pStack );
break;
default:
break;
}
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
else // ptr to complex value | ref
{
if (! rParam.bIn) // is pure out
{
// cpp out is constructed mem, uno out is not!
uno_constructData(
pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pParamTypeDescr );
pTempIndizes[nTempIndizes] = nPos; // default constructed for cpp call
// will be released at reconversion
ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr;
}
// is in/inout
else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr ))
{
uno_copyAndConvertData(
pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() );
pTempIndizes[nTempIndizes] = nPos; // has to be reconverted
// will be released at reconversion
ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr;
}
else // direct way
{
pCppArgs[nPos] = pUnoArgs[nPos];
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
INSERT_INT64( &(pCppArgs[nPos]), nGPR, pGPR, pStack );
}
}
try
{
try {
callVirtualMethod(
pAdjustedThisPtr, aVtableSlot.index,
pCppReturn, pReturnTypeRef, bSimpleReturn,
pStackStart, ( pStack - pStackStart ),
pGPR, nGPR,
pFPR, nFPR );
} catch (Exception &) {
throw;
} catch (std::exception & e) {
OUStringBuffer buf;
buf.appendAscii(RTL_CONSTASCII_STRINGPARAM("C++ code threw "));
appendCString(buf, typeid(e).name());
buf.appendAscii(RTL_CONSTASCII_STRINGPARAM(": "));
appendCString(buf, e.what());
throw RuntimeException(
buf.makeStringAndClear(), Reference< XInterface >());
} catch (...) {
throw RuntimeException(
OUString(
RTL_CONSTASCII_USTRINGPARAM(
"C++ code threw unknown exception")),
Reference< XInterface >());
}
// NO exception occured...
*ppUnoExc = 0;
// reconvert temporary params
for ( ; nTempIndizes--; )
{
sal_Int32 nIndex = pTempIndizes[nTempIndizes];
typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndizes];
if (pParams[nIndex].bIn)
{
if (pParams[nIndex].bOut) // inout
{
uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
}
}
else // pure out
{
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
}
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release );
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
// return value
if (pCppReturn && pUnoReturn != pCppReturn)
{
uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr,
pThis->getBridge()->getCpp2Uno() );
uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release );
}
}
catch (...)
{
// fill uno exception
fillUnoException( CPPU_CURRENT_NAMESPACE::__cxa_get_globals()->caughtExceptions, *ppUnoExc, pThis->getBridge()->getCpp2Uno() );
// temporary params
for ( ; nTempIndizes--; )
{
sal_Int32 nIndex = pTempIndizes[nTempIndizes];
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndizes], cpp_release );
TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndizes] );
}
// return type
if (pReturnTypeDescr)
TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
}
}
//==================================================================================================
namespace bridges { namespace cpp_uno { namespace shared {
void unoInterfaceProxyDispatch(
uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr,
void * pReturn, void * pArgs[], uno_Any ** ppException )
{
// is my surrogate
bridges::cpp_uno::shared::UnoInterfaceProxy * pThis
= static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy * >(pUnoI);
#if OSL_DEBUG_LEVEL > 0
typelib_InterfaceTypeDescription * pTypeDescr = pThis->pTypeDescr;
#endif
switch (pMemberDescr->eTypeClass)
{
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
{
#if OSL_DEBUG_LEVEL > 0
// determine vtable call index
sal_Int32 nMemberPos = ((typelib_InterfaceMemberTypeDescription *)pMemberDescr)->nPosition;
OSL_ENSURE( nMemberPos < pTypeDescr->nAllMembers, "### member pos out of range!" );
#endif
VtableSlot aVtableSlot(
getVtableSlot(
reinterpret_cast<
typelib_InterfaceAttributeTypeDescription const * >(
pMemberDescr)));
if (pReturn)
{
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef,
0, 0, // no params
pReturn, pArgs, ppException );
}
else
{
// is SET
typelib_MethodParameter aParam;
aParam.pTypeRef =
((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef;
aParam.bIn = sal_True;
aParam.bOut = sal_False;
typelib_TypeDescriptionReference * pReturnTypeRef = 0;
OUString aVoidName( RTL_CONSTASCII_USTRINGPARAM("void") );
typelib_typedescriptionreference_new(
&pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData );
// dependent dispatch
aVtableSlot.index += 1; // get, then set method
cpp_call(
pThis, aVtableSlot, // get, then set method
pReturnTypeRef,
1, &aParam,
pReturn, pArgs, ppException );
typelib_typedescriptionreference_release( pReturnTypeRef );
}
break;
}
case typelib_TypeClass_INTERFACE_METHOD:
{
#if OSL_DEBUG_LEVEL > 0
// determine vtable call index
sal_Int32 nMemberPos = ((typelib_InterfaceMemberTypeDescription *)pMemberDescr)->nPosition;
OSL_ENSURE( nMemberPos < pTypeDescr->nAllMembers, "### member pos out of range!" );
#endif
VtableSlot aVtableSlot(
getVtableSlot(
reinterpret_cast<
typelib_InterfaceMethodTypeDescription const * >(
pMemberDescr)));
switch (aVtableSlot.index)
{
// standard calls
case 1: // acquire uno interface
(*pUnoI->acquire)( pUnoI );
*ppException = 0;
break;
case 2: // release uno interface
(*pUnoI->release)( pUnoI );
*ppException = 0;
break;
case 0: // queryInterface() opt
{
typelib_TypeDescription * pTD = 0;
TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() );
if (pTD)
{
uno_Interface * pInterface = 0;
(*pThis->getBridge()->getUnoEnv()->getRegisteredInterface)(
pThis->getBridge()->getUnoEnv(),
(void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD );
if (pInterface)
{
::uno_any_construct(
reinterpret_cast< uno_Any * >( pReturn ),
&pInterface, pTD, 0 );
(*pInterface->release)( pInterface );
TYPELIB_DANGER_RELEASE( pTD );
*ppException = 0;
break;
}
TYPELIB_DANGER_RELEASE( pTD );
}
} // else perform queryInterface()
default:
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams,
pReturn, pArgs, ppException );
}
break;
}
default:
{
::com::sun::star::uno::RuntimeException aExc(
OUString( RTL_CONSTASCII_USTRINGPARAM("illegal member type description!") ),
::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() );
Type const & rExcType = ::getCppuType( &aExc );
// binary identical null reference
::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 );
}
}
}
} } }