blob: d6e2b0fd33958c4d65e01fe4a7e89e4b7cc474e4 [file] [log] [blame]
/**************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
#ifndef _SBRUNTIME_HXX
#define _SBRUNTIME_HXX
#ifndef _SBX_HXX
#include <basic/sbx.hxx>
#endif
#include "sb.hxx"
// Define activates class UCBStream in iosys.cxx
#define _USE_UNO
#ifdef _USE_UNO
#include <rtl/ustring.hxx>
#include <com/sun/star/uno/Sequence.hxx>
#include <osl/file.hxx>
#include <rtl/math.hxx>
#include <i18npool/lang.h>
#include <vector>
#include <com/sun/star/lang/XComponent.hpp>
#include <com/sun/star/container/XEnumeration.hpp>
#include <unotools/localedatawrapper.hxx>
using namespace com::sun::star::uno;
using namespace com::sun::star::lang;
using namespace com::sun::star::container;
// Define activates old file implementation
// (only in non UCB case)
// #define _OLD_FILE_IMPL
//#include <sal/types.h>
//#include <rtl/byteseq.hxx>
//#include <rtl/ustring>
namespace basicEncoder
{
// TODO: Use exported functionality (code is copied from deamons2/ucb)
class AsciiEncoder
{
public:
static ::rtl::OUString decodeUnoUrlParamValue(const rtl::OUString & rSource);
//static ::rtl::OUString encodeUnoUrlParamValue(const rtl::OUString & rSource);
//static ::rtl::ByteSequence decode(const ::rtl::OUString & string);
//static ::rtl::OUString encode(const ::rtl::ByteSequence & bytes);
//static void test();
};
}
#endif /* _USE_UNO */
class SbiInstance; // aktiver StarBASIC-Prozess
class SbiRuntime; // aktive StarBASIC-Prozedur-Instanz
struct SbiArgvStack; // Argv stack element
struct SbiGosubStack; // GOSUB stack element
class SbiImage; // Code-Image
class SbiIoSystem; // Dateisystem
class SbiDdeControl; // DDE-Steuerung
class SbiDllMgr; // Aufrufe in DLLs
class SvNumberFormatter; // Zeit/Datumsfunktionen
enum ForType
{
FOR_TO,
FOR_EACH_ARRAY,
FOR_EACH_COLLECTION,
FOR_EACH_XENUMERATION
};
struct SbiForStack { // for/next stack:
SbiForStack* pNext; // Chain
SbxVariableRef refVar; // loop variable
SbxVariableRef refEnd; // end expression / for each: Array/BasicCollection object
SbxVariableRef refInc; // increment expression
// For each support
ForType eForType;
sal_Int32 nCurCollectionIndex;
sal_Int32* pArrayCurIndices;
sal_Int32* pArrayLowerBounds;
sal_Int32* pArrayUpperBounds;
Reference< XEnumeration > xEnumeration;
SbiForStack( void )
: pArrayCurIndices( NULL )
, pArrayLowerBounds( NULL )
, pArrayUpperBounds( NULL )
{}
~SbiForStack()
{
delete[] pArrayCurIndices;
delete[] pArrayLowerBounds;
delete[] pArrayUpperBounds;
}
};
struct SbiGosubStack { // GOSUB-Stack:
SbiGosubStack* pNext; // Chain
const sal_uInt8* pCode; // Return-Pointer
sal_uInt16 nStartForLvl; // #118235: For Level in moment of gosub
};
#define MAXRECURSION 500 // max. 500 Rekursionen
#define Sb_ATTR_NORMAL 0x0000
#define Sb_ATTR_HIDDEN 0x0002
#define Sb_ATTR_SYSTEM 0x0004
#define Sb_ATTR_VOLUME 0x0008
#define Sb_ATTR_DIRECTORY 0x0010
#define Sb_ATTR_ARCHIVE 0x0020
class Dir;
class WildCard;
class SbiRTLData
{
public:
#ifdef _OLD_FILE_IMPL
Dir* pDir;
#else
::osl::Directory* pDir;
#endif
sal_Int16 nDirFlags;
short nCurDirPos;
String sFullNameToBeChecked;
WildCard* pWildCard;
#ifdef _USE_UNO
Sequence< ::rtl::OUString > aDirSeq;
#endif /* _USE_UNO */
SbiRTLData();
~SbiRTLData();
};
// Die Instanz entspricht einem laufenden StarBASIC. Mehrere gleichzeitig
// laufende BASICs werden ueber verkettete Instanzen verwaltet. Hier liegen
// alle Daten, die nur leben, wenn BASIC auch lebt, wie z.B. das I/O-System.
typedef ::std::vector
<
::com::sun::star::uno::Reference< ::com::sun::star::lang::XComponent >
>
ComponentVector_t;
class SbiInstance
{
friend class SbiRuntime;
SbiRTLData aRTLData;
SbiIoSystem* pIosys; // Dateisystem
SbiDdeControl* pDdeCtrl; // DDE
SbiDllMgr* pDllMgr; // DLL-Calls (DECLARE)
StarBASIC* pBasic;
SvNumberFormatter* pNumberFormatter;
LanguageType meFormatterLangType;
DateFormat meFormatterDateFormat;
sal_uInt32 nStdDateIdx, nStdTimeIdx, nStdDateTimeIdx;
SbError nErr; // aktueller Fehlercode
String aErrorMsg; // letzte Error-Message fuer $ARG
sal_uInt16 nErl; // aktuelle Fehlerzeile
sal_Bool bReschedule; // Flag: sal_True = Reschedule in Hauptschleife
sal_Bool bCompatibility; // Flag: sal_True = VBA runtime compatibility mode
ComponentVector_t ComponentVector;
public:
SbiRuntime* pRun; // Call-Stack
SbiInstance* pNext; // Instanzen-Chain
// #31460 Neues Konzept fuer StepInto/Over/Out,
// Erklaerung siehe runtime.cxx bei SbiInstance::CalcBreakCallLevel()
sal_uInt16 nCallLvl; // Call-Level (wg. Rekursion)
sal_uInt16 nBreakCallLvl; // Call-Level zum Anhalten
void CalcBreakCallLevel( sal_uInt16 nFlags ); // Gemaess Flags setzen
SbiInstance( StarBASIC* );
~SbiInstance();
void Error( SbError ); // trappable Error
void Error( SbError, const String& rMsg ); // trappable Error mit Message
void ErrorVB( sal_Int32 nVBNumber, const String& rMsg );
void setErrorVB( sal_Int32 nVBNumber, const String& rMsg );
void FatalError( SbError ); // non-trappable Error
void FatalError( SbError, const String& ); // non-trappable Error
void Abort(); // Abbruch mit aktuellem Fehlercode
void Stop();
SbError GetErr() { return nErr; }
String GetErrorMsg() { return aErrorMsg; }
xub_StrLen GetErl() { return nErl; }
void EnableReschedule( sal_Bool bEnable ) { bReschedule = bEnable; }
sal_Bool IsReschedule( void ) { return bReschedule; }
void EnableCompatibility( sal_Bool bEnable ) { bCompatibility = bEnable; }
sal_Bool IsCompatibility( void ) { return bCompatibility; }
ComponentVector_t& getComponentVector( void ) { return ComponentVector; }
SbMethod* GetCaller( sal_uInt16 );
SbModule* GetActiveModule();
SbxArray* GetLocals( SbMethod* );
SbiIoSystem* GetIoSystem() { return pIosys; }
SbiDdeControl* GetDdeControl() { return pDdeCtrl; }
StarBASIC* GetBasic( void ) { return pBasic; }
SbiDllMgr* GetDllMgr();
SbiRTLData* GetRTLData() const { return (SbiRTLData*)&aRTLData; }
SvNumberFormatter* GetNumberFormatter();
sal_uInt32 GetStdDateIdx() const { return nStdDateIdx; }
sal_uInt32 GetStdTimeIdx() const { return nStdTimeIdx; }
sal_uInt32 GetStdDateTimeIdx() const { return nStdDateTimeIdx; }
// #39629# NumberFormatter auch statisch anbieten
static void PrepareNumberFormatter( SvNumberFormatter*& rpNumberFormatter,
sal_uInt32 &rnStdDateIdx, sal_uInt32 &rnStdTimeIdx, sal_uInt32 &rnStdDateTimeIdx,
LanguageType* peFormatterLangType=NULL, DateFormat* peFormatterDateFormat=NULL );
};
SbiIoSystem* SbGetIoSystem(); // das aktuelle I/O-System
// Verkettbare Items, um Referenzen temporaer zu halten
struct RefSaveItem
{
SbxVariableRef xRef;
RefSaveItem* pNext;
RefSaveItem() { pNext = NULL; }
};
// Eine Instanz dieser Klasse wird fuer jedes ausgefuehrte Unterprogramm
// aufgesetzt. Diese Instanz ist das Herz der BASIC-Maschine und enthaelt
// nur lokale Daten.
class SbiRuntime
{
friend void SbRtl_CallByName( StarBASIC* pBasic, SbxArray& rPar, sal_Bool bWrite );
typedef void( SbiRuntime::*pStep0 )();
typedef void( SbiRuntime::*pStep1 )( sal_uInt32 nOp1 );
typedef void( SbiRuntime::*pStep2 )( sal_uInt32 nOp1, sal_uInt32 nOp2 );
static pStep0 aStep0[]; // Opcode-Tabelle Gruppe 0
static pStep1 aStep1[]; // Opcode-Tabelle Gruppe 1
static pStep2 aStep2[]; // Opcode-Tabelle Gruppe 2
StarBASIC& rBasic; // StarBASIC-Instanz
SbiInstance* pInst; // aktiver Thread
SbModule* pMod; // aktuelles Modul
SbMethod* pMeth; // Methoden-Instanz
SbiIoSystem* pIosys; // I/O-System
const SbiImage* pImg; // Code-Image
SbxArrayRef refExprStk; // expression stack
SbxArrayRef refCaseStk; // CASE expression stack
SbxArrayRef refRedimpArray; // Array saved to use for REDIM PRESERVE
SbxVariableRef xDummyVar; // Ersatz fuer nicht gefundene Variablen
SbiArgvStack* pArgvStk; // ARGV-Stack
SbiGosubStack* pGosubStk; // GOSUB stack
SbiForStack* pForStk; // FOR/NEXT-Stack
sal_uInt16 nExprLvl; // Tiefe des Expr-Stacks
sal_uInt16 nGosubLvl; // Zum Vermeiden von Tot-Rekursionen
sal_uInt16 nForLvl; // #118235: Maintain for level
const sal_uInt8* pCode; // aktueller Code-Pointer
const sal_uInt8* pStmnt; // Beginn des lezten Statements
const sal_uInt8* pError; // Adresse des aktuellen Error-Handlers
const sal_uInt8* pRestart; // Restart-Adresse
const sal_uInt8* pErrCode; // Restart-Adresse RESUME NEXT
const sal_uInt8* pErrStmnt; // Restart-Adresse RESUMT 0
String aLibName; // Lib-Name fuer Declare-Call
SbxArrayRef refParams; // aktuelle Prozedur-Parameter
SbxArrayRef refLocals; // lokale Variable
SbxArrayRef refArgv; // aktueller Argv
// AB, 28.3.2000 #74254, Ein refSaveObj reicht nicht! Neu: pRefSaveList (s.u.)
//SbxVariableRef refSaveObj; // #56368 Bei StepElem Referenz sichern
short nArgc; // aktueller Argc
sal_Bool bRun; // sal_True: Programm ist aktiv
sal_Bool bError; // sal_True: Fehler behandeln
sal_Bool bInError; // sal_True: in einem Fehler-Handler
sal_Bool bBlocked; // sal_True: blocked by next call level, #i48868
sal_Bool bVBAEnabled;
sal_uInt16 nFlags; // Debugging-Flags
SbError nError; // letzter Fehler
sal_uInt16 nOps; // Opcode-Zaehler
sal_uInt32 m_nLastTime;
RefSaveItem* pRefSaveList; // #74254 Temporaere Referenzen sichern
RefSaveItem* pItemStoreList; // Unbenutzte Items aufbewahren
void SaveRef( SbxVariable* pVar )
{
RefSaveItem* pItem = pItemStoreList;
if( pItem )
pItemStoreList = pItem->pNext;
else
pItem = new RefSaveItem();
pItem->pNext = pRefSaveList;
pItem->xRef = pVar;
pRefSaveList = pItem;
}
void ClearRefs( void )
{
while( pRefSaveList )
{
RefSaveItem* pToClearItem = pRefSaveList;
pRefSaveList = pToClearItem->pNext;
pToClearItem->xRef = NULL;
pToClearItem->pNext = pItemStoreList;
pItemStoreList = pToClearItem;
}
}
SbxVariable* FindElement
( SbxObject* pObj, sal_uInt32 nOp1, sal_uInt32 nOp2, SbError, sal_Bool bLocal, sal_Bool bStatic = sal_False );
void SetupArgs( SbxVariable*, sal_uInt32 );
SbxVariable* CheckArray( SbxVariable* );
void PushVar( SbxVariable* ); // Variable push
SbxVariableRef PopVar(); // Variable pop
SbxVariable* GetTOS( short=0 ); // Variable vom TOS holen
void TOSMakeTemp(); // TOS in temp. Variable wandeln
sal_Bool ClearExprStack(); // Expr-Stack freigeben
void PushGosub( const sal_uInt8* ); // GOSUB-Element push
void PopGosub(); // GOSUB-Element pop
void ClearGosubStack(); // GOSUB-Stack freigeben
void PushArgv(); // Argv-Element push
void PopArgv(); // Argv-Element pop
void ClearArgvStack(); // Argv-Stack freigeben
void PushFor(); // For-Element push
void PushForEach(); // For-Each-Element push
void PopFor(); // For-Element pop
void ClearForStack(); // For-Stack freigeben
void StepArith( SbxOperator ); // arithmetische Verknuepfungen
void StepUnary( SbxOperator ); // unaere Verknuepfungen
void StepCompare( SbxOperator );// Vergleiche
void SetParameters( SbxArray* );// Parameter uebernehmen
// MUSS NOCH IMPLEMENTIERT WERDEN
void DllCall( const String&, const String&, SbxArray*, SbxDataType, sal_Bool );
// #56204 DIM-Funktionalitaet in Hilfsmethode auslagern (step0.cxx)
void DimImpl( SbxVariableRef refVar );
// #115829
bool implIsClass( SbxObject* pObj, const String& aClass );
void StepSETCLASS_impl( sal_uInt32 nOp1, bool bHandleDflt = false );
// Die nachfolgenden Routinen werden vom Single Stepper
// gerufen und implementieren die einzelnen Opcodes
void StepNOP(), StepEXP(), StepMUL(), StepDIV();
void StepMOD(), StepPLUS(), StepMINUS(), StepNEG();
void StepEQ(), StepNE(), StepLT(), StepGT();
void StepLE(), StepGE(), StepIDIV(), StepAND();
void StepOR(), StepXOR(), StepEQV(), StepIMP();
void StepNOT(), StepCAT(), StepLIKE(), StepIS();
void StepCLONE(), StepOLDBASED(), StepARGC();
void StepARGV(), StepINPUT(), StepLINPUT(), StepSTOP();
void StepGET(), StepSET(), StepVBASET(), StepPUT(), StepPUTC();
void StepSET_Impl( SbxVariableRef& refVal, SbxVariableRef& refVar, bool bDefaultHandling = false );
void StepDIM(), StepREDIM(), StepREDIMP(), StepERASE();
void StepINITFOR(), StepNEXT(), StepERROR(), StepINITFOREACH();
void StepCASE(), StepENDCASE(), StepSTDERROR();
void StepNOERROR(), StepCHANNEL(), StepCHANNEL0(), StepPRINT();
void StepPRINTF(), StepWRITE(), StepRENAME(), StepPROMPT();
void StepRESTART(), StepEMPTY(), StepLEAVE();
void StepLSET(), StepRSET(), StepREDIMP_ERASE(), StepERASE_CLEAR();
void StepARRAYACCESS(), StepBYVAL();
// Alle Opcodes mit einem Operanden
void StepLOADNC( sal_uInt32 ), StepLOADSC( sal_uInt32 ), StepLOADI( sal_uInt32 );
void StepARGN( sal_uInt32 ), StepBASED( sal_uInt32 ), StepPAD( sal_uInt32 );
void StepJUMP( sal_uInt32 ), StepJUMPT( sal_uInt32 );
void StepJUMPF( sal_uInt32 ), StepONJUMP( sal_uInt32 );
void StepGOSUB( sal_uInt32 ), StepRETURN( sal_uInt32 );
void StepTESTFOR( sal_uInt32 ), StepCASETO( sal_uInt32 ), StepERRHDL( sal_uInt32 );
void StepRESUME( sal_uInt32 ), StepSETCLASS( sal_uInt32 ), StepVBASETCLASS( sal_uInt32 ), StepTESTCLASS( sal_uInt32 ), StepLIB( sal_uInt32 );
bool checkClass_Impl( const SbxVariableRef& refVal, const String& aClass, bool bRaiseErrors, bool bDefault = true );
void StepCLOSE( sal_uInt32 ), StepPRCHAR( sal_uInt32 ), StepARGTYP( sal_uInt32 );
// Alle Opcodes mit zwei Operanden
void StepRTL( sal_uInt32, sal_uInt32 ), StepPUBLIC( sal_uInt32, sal_uInt32 ), StepPUBLIC_P( sal_uInt32, sal_uInt32 );
void StepPUBLIC_Impl( sal_uInt32, sal_uInt32, bool bUsedForClassModule );
void StepFIND_Impl( SbxObject* pObj, sal_uInt32 nOp1, sal_uInt32 nOp2, SbError, sal_Bool bLocal, sal_Bool bStatic = sal_False );
void StepFIND( sal_uInt32, sal_uInt32 ), StepELEM( sal_uInt32, sal_uInt32 );
void StepGLOBAL( sal_uInt32, sal_uInt32 ), StepLOCAL( sal_uInt32, sal_uInt32 );
void StepPARAM( sal_uInt32, sal_uInt32), StepCREATE( sal_uInt32, sal_uInt32 );
void StepCALL( sal_uInt32, sal_uInt32 ), StepCALLC( sal_uInt32, sal_uInt32 );
void StepCASEIS( sal_uInt32, sal_uInt32 ), StepSTMNT( sal_uInt32, sal_uInt32 );
SbxVariable* StepSTATIC_Impl( String& aName, SbxDataType& t );
void StepOPEN( sal_uInt32, sal_uInt32 ), StepSTATIC( sal_uInt32, sal_uInt32 );
void StepTCREATE(sal_uInt32,sal_uInt32), StepDCREATE(sal_uInt32,sal_uInt32);
void StepGLOBAL_P( sal_uInt32, sal_uInt32 ),StepFIND_G( sal_uInt32, sal_uInt32 );
void StepDCREATE_REDIMP(sal_uInt32,sal_uInt32), StepDCREATE_IMPL(sal_uInt32,sal_uInt32);
void StepFIND_CM( sal_uInt32, sal_uInt32 );
void StepFIND_STATIC( sal_uInt32, sal_uInt32 );
void implHandleSbxFlags( SbxVariable* pVar, SbxDataType t, sal_uInt32 nOp2 );
public:
void SetVBAEnabled( bool bEnabled );
sal_uInt16 GetImageFlag( sal_uInt16 n ) const;
sal_uInt16 GetBase();
xub_StrLen nLine,nCol1,nCol2; // aktuelle Zeile, Spaltenbereich
SbiRuntime* pNext; // Stack-Chain
SbiRuntime( SbModule*, SbMethod*, sal_uInt32 );
~SbiRuntime();
void Error( SbError, bool bVBATranslationAlreadyDone = false ); // Fehler setzen, falls != 0
void Error( SbError, const String& ); // Fehler setzen, falls != 0
void FatalError( SbError ); // Fehlerbehandlung=Standard, Fehler setzen
void FatalError( SbError, const String& ); // Fehlerbehandlung=Standard, Fehler setzen
static sal_Int32 translateErrorToVba( SbError nError, String& rMsg );
void DumpPCode();
sal_Bool Step(); // Einzelschritt (ein Opcode)
void Stop() { bRun = sal_False; }
sal_Bool IsRun() { return bRun; }
void block( void ) { bBlocked = sal_True; }
void unblock( void ) { bBlocked = sal_False; }
SbMethod* GetMethod() { return pMeth; }
SbModule* GetModule() { return pMod; }
sal_uInt16 GetDebugFlags() { return nFlags; }
void SetDebugFlags( sal_uInt16 nFl ) { nFlags = nFl; }
SbMethod* GetCaller();
SbxArray* GetLocals();
SbxArray* GetParams();
SbiForStack* FindForStackItemForCollection( class BasicCollection* pCollection );
SbxBase* FindElementExtern( const String& rName );
static bool isVBAEnabled();
};
inline void checkArithmeticOverflow( double d )
{
if( !::rtl::math::isFinite( d ) )
StarBASIC::Error( SbERR_MATH_OVERFLOW );
}
inline void checkArithmeticOverflow( SbxVariable* pVar )
{
if( pVar->GetType() == SbxDOUBLE )
{
double d = pVar->GetDouble();
checkArithmeticOverflow( d );
}
}
// Hilfsfunktion, um aktives Basic zu finden
StarBASIC* GetCurrentBasic( StarBASIC* pRTBasic );
// Get information if security restrictions should be
// used (File IO based on UCB, no RTL function SHELL
// no DDE functionality, no DLLCALL) in basic because
// of portal "virtual" users (portal user != UNIX user)
// (Implemented in iosys.cxx)
sal_Bool needSecurityRestrictions( void );
// Returns sal_True if UNO is available, otherwise the old
// file system implementation has to be used
// (Implemented in iosys.cxx)
sal_Bool hasUno( void );
// Converts possibly relative paths to absolute paths
// according to the setting done by ChDir/ChDrive
// (Implemented in methods.cxx)
String getFullPath( const String& aRelPath );
// Sets (virtual) current path for UCB file access
void implChDir( const String& aDir );
// Sets (virtual) current drive for UCB file access
void implChDrive( const String& aDrive );
// Returns (virtual) current path for UCB file access
String implGetCurDir( void );
// Implementation of StepRENAME with UCB
// (Implemented in methods.cxx, so step0.cxx
// has not to be infected with UNO)
void implStepRenameUCB( const String& aSource, const String& aDest );
//*** OSL file access ***
// #87427 OSL need File URLs, so map to getFullPath
inline String getFullPathUNC( const String& aRelPath )
{
return getFullPath( aRelPath );
}
void implStepRenameOSL( const String& aSource, const String& aDest );
bool IsBaseIndexOne();
#endif