blob: 9ece652ff55f8f1f6785d6f90f89624936239eb0 [file] [log] [blame]
/**************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_basic.hxx"
#include <math.h>
#include <rtl/math.hxx>
#include "sbcomp.hxx"
#include "expr.hxx"
//////////////////////////////////////////////////////////////////////////
SbiExprNode::SbiExprNode( void )
{
pLeft = NULL;
pRight = NULL;
eNodeType = SbxDUMMY;
}
SbiExprNode::SbiExprNode( SbiParser* p, SbiExprNode* l, SbiToken t, SbiExprNode* r )
{
BaseInit( p );
pLeft = l;
pRight = r;
eTok = t;
nVal = 0;
eType = SbxVARIANT; // Nodes sind immer Variant
eNodeType = SbxNODE;
bComposite= sal_True;
}
SbiExprNode::SbiExprNode( SbiParser* p, double n, SbxDataType t )
{
BaseInit( p );
eType = t;
eNodeType = SbxNUMVAL;
nVal = n;
}
SbiExprNode::SbiExprNode( SbiParser* p, const String& rVal )
{
BaseInit( p );
eType = SbxSTRING;
eNodeType = SbxSTRVAL;
aStrVal = rVal;
}
SbiExprNode::SbiExprNode( SbiParser* p, const SbiSymDef& r, SbxDataType t, SbiExprList* l )
{
BaseInit( p );
eType = ( t == SbxVARIANT ) ? r.GetType() : t;
eNodeType = SbxVARVAL;
aVar.pDef = (SbiSymDef*) &r;
aVar.pPar = l;
aVar.pvMorePar = NULL;
aVar.pNext= NULL;
// Funktionsergebnisse sind nie starr
bComposite= sal_Bool( aVar.pDef->GetProcDef() != NULL );
}
// #120061 TypeOf
SbiExprNode::SbiExprNode( SbiParser* p, SbiExprNode* l, sal_uInt16 nId )
{
BaseInit( p );
pLeft = l;
eType = SbxBOOL;
eNodeType = SbxTYPEOF;
nTypeStrId = nId;
}
// new <type>
SbiExprNode::SbiExprNode( SbiParser* p, sal_uInt16 nId )
{
BaseInit( p );
eType = SbxOBJECT;
eNodeType = SbxNEW;
nTypeStrId = nId;
}
// AB: 17.12.95, Hilfsfunktion fuer Ctor fuer einheitliche Initialisierung
void SbiExprNode::BaseInit( SbiParser* p )
{
pGen = &p->aGen;
eTok = NIL;
pLeft = NULL;
pRight = NULL;
pWithParent = NULL;
bComposite = sal_False;
bError = sal_False;
}
SbiExprNode::~SbiExprNode()
{
delete pLeft;
delete pRight;
if( IsVariable() )
{
delete aVar.pPar;
delete aVar.pNext;
SbiExprListVector* pvMorePar = aVar.pvMorePar;
if( pvMorePar )
{
SbiExprListVector::iterator it;
for( it = pvMorePar->begin() ; it != pvMorePar->end() ; ++it )
delete *it;
delete pvMorePar;
}
}
}
SbiSymDef* SbiExprNode::GetVar()
{
if( eNodeType == SbxVARVAL )
return aVar.pDef;
else
return NULL;
}
SbiSymDef* SbiExprNode::GetRealVar()
{
SbiExprNode* p = GetRealNode();
if( p )
return p->GetVar();
else
return NULL;
}
// AB: 18.12.95
SbiExprNode* SbiExprNode::GetRealNode()
{
if( eNodeType == SbxVARVAL )
{
SbiExprNode* p = this;
while( p->aVar.pNext )
p = p->aVar.pNext;
return p;
}
else
return NULL;
}
// Diese Methode setzt den Typ um, falls er in den Integer-Bereich hineinpasst
sal_Bool SbiExprNode::IsIntConst()
{
if( eNodeType == SbxNUMVAL )
{
if( eType >= SbxINTEGER && eType <= SbxDOUBLE )
{
double n;
if( nVal >= SbxMININT && nVal <= SbxMAXINT && modf( nVal, &n ) == 0 )
{
nVal = (double) (short) nVal;
eType = SbxINTEGER;
return sal_True;
}
}
}
return sal_False;
}
sal_Bool SbiExprNode::IsNumber()
{
return sal_Bool( eNodeType == SbxNUMVAL );
}
sal_Bool SbiExprNode::IsString()
{
return sal_Bool( eNodeType == SbxSTRVAL );
}
sal_Bool SbiExprNode::IsVariable()
{
return sal_Bool( eNodeType == SbxVARVAL );
}
sal_Bool SbiExprNode::IsLvalue()
{
return IsVariable();
}
// Ermitteln der Tiefe eines Baumes
short SbiExprNode::GetDepth()
{
if( IsOperand() ) return 0;
else
{
short d1 = pLeft->GetDepth();
short d2 = pRight->GetDepth();
return( (d1 < d2 ) ? d2 : d1 ) + 1;
}
}
// Abgleich eines Baumes:
// 1. Constant Folding
// 2. Typabgleich
// 3. Umwandlung der Operanden in Strings
// 4. Hochziehen der Composite- und Error-Bits
void SbiExprNode::Optimize()
{
FoldConstants();
CollectBits();
}
// Hochziehen der Composite- und Fehlerbits
void SbiExprNode::CollectBits()
{
if( pLeft )
{
pLeft->CollectBits();
bError |= pLeft->bError;
bComposite |= pLeft->bComposite;
}
if( pRight )
{
pRight->CollectBits();
bError |= pRight->bError;
bComposite |= pRight->bComposite;
}
}
// Kann ein Zweig umgeformt werden, wird sal_True zurueckgeliefert. In diesem
// Fall ist das Ergebnis im linken Zweig.
void SbiExprNode::FoldConstants()
{
if( IsOperand() || eTok == LIKE ) return;
if( pLeft )
pLeft->FoldConstants();
if( pRight )
{
pRight->FoldConstants();
if( pLeft->IsConstant() && pRight->IsConstant()
&& pLeft->eNodeType == pRight->eNodeType )
{
CollectBits();
if( eTok == CAT )
// CAT verbindet auch zwei Zahlen miteinander!
eType = SbxSTRING;
if( pLeft->eType == SbxSTRING )
// Kein Type Mismatch!
eType = SbxSTRING;
if( eType == SbxSTRING )
{
String rl( pLeft->GetString() );
String rr( pRight->GetString() );
delete pLeft; pLeft = NULL;
delete pRight; pRight = NULL;
bComposite = sal_False;
if( eTok == PLUS || eTok == CAT )
{
eTok = CAT;
// Verkettung:
aStrVal = rl;
aStrVal += rr;
eType = SbxSTRING;
eNodeType = SbxSTRVAL;
}
else
{
eType = SbxDOUBLE;
eNodeType = SbxNUMVAL;
StringCompare eRes = rr.CompareTo( rl );
switch( eTok )
{
case EQ:
nVal = ( eRes == COMPARE_EQUAL ) ? SbxTRUE : SbxFALSE;
break;
case NE:
nVal = ( eRes != COMPARE_EQUAL ) ? SbxTRUE : SbxFALSE;
break;
case LT:
nVal = ( eRes == COMPARE_LESS ) ? SbxTRUE : SbxFALSE;
break;
case GT:
nVal = ( eRes == COMPARE_GREATER ) ? SbxTRUE : SbxFALSE;
break;
case LE:
nVal = ( eRes != COMPARE_GREATER ) ? SbxTRUE : SbxFALSE;
break;
case GE:
nVal = ( eRes != COMPARE_LESS ) ? SbxTRUE : SbxFALSE;
break;
default:
pGen->GetParser()->Error( SbERR_CONVERSION );
bError = sal_True;
}
}
}
else
{
double nl = pLeft->nVal;
double nr = pRight->nVal;
long ll = 0, lr = 0;
long llMod = 0, lrMod = 0;
if( ( eTok >= AND && eTok <= IMP )
|| eTok == IDIV || eTok == MOD )
{
// Integer-Operationen
sal_Bool err = sal_False;
if( nl > SbxMAXLNG ) err = sal_True, nl = SbxMAXLNG;
else
if( nl < SbxMINLNG ) err = sal_True, nl = SbxMINLNG;
if( nr > SbxMAXLNG ) err = sal_True, nr = SbxMAXLNG;
else
if( nr < SbxMINLNG ) err = sal_True, nr = SbxMINLNG;
ll = (long) nl; lr = (long) nr;
llMod = (long) (nl < 0 ? nl - 0.5 : nl + 0.5);
lrMod = (long) (nr < 0 ? nr - 0.5 : nr + 0.5);
if( err )
{
pGen->GetParser()->Error( SbERR_MATH_OVERFLOW );
bError = sal_True;
}
}
sal_Bool bBothInt = sal_Bool( pLeft->eType < SbxSINGLE
&& pRight->eType < SbxSINGLE );
delete pLeft; pLeft = NULL;
delete pRight; pRight = NULL;
nVal = 0;
eType = SbxDOUBLE;
eNodeType = SbxNUMVAL;
bComposite = sal_False;
sal_Bool bCheckType = sal_False;
switch( eTok )
{
case EXPON:
nVal = pow( nl, nr ); break;
case MUL:
bCheckType = sal_True;
nVal = nl * nr; break;
case DIV:
if( !nr )
{
pGen->GetParser()->Error( SbERR_ZERODIV ); nVal = HUGE_VAL;
bError = sal_True;
} else nVal = nl / nr;
break;
case PLUS:
bCheckType = sal_True;
nVal = nl + nr; break;
case MINUS:
bCheckType = sal_True;
nVal = nl - nr; break;
case EQ:
nVal = ( nl == nr ) ? SbxTRUE : SbxFALSE;
eType = SbxINTEGER; break;
case NE:
nVal = ( nl != nr ) ? SbxTRUE : SbxFALSE;
eType = SbxINTEGER; break;
case LT:
nVal = ( nl < nr ) ? SbxTRUE : SbxFALSE;
eType = SbxINTEGER; break;
case GT:
nVal = ( nl > nr ) ? SbxTRUE : SbxFALSE;
eType = SbxINTEGER; break;
case LE:
nVal = ( nl <= nr ) ? SbxTRUE : SbxFALSE;
eType = SbxINTEGER; break;
case GE:
nVal = ( nl >= nr ) ? SbxTRUE : SbxFALSE;
eType = SbxINTEGER; break;
case IDIV:
if( !lr )
{
pGen->GetParser()->Error( SbERR_ZERODIV ); nVal = HUGE_VAL;
bError = sal_True;
} else nVal = ll / lr;
eType = SbxLONG; break;
case MOD:
if( !lr )
{
pGen->GetParser()->Error( SbERR_ZERODIV ); nVal = HUGE_VAL;
bError = sal_True;
} else nVal = llMod % lrMod;
eType = SbxLONG; break;
case AND:
nVal = (double) ( ll & lr ); eType = SbxLONG; break;
case OR:
nVal = (double) ( ll | lr ); eType = SbxLONG; break;
case XOR:
nVal = (double) ( ll ^ lr ); eType = SbxLONG; break;
case EQV:
nVal = (double) ( ~ll ^ lr ); eType = SbxLONG; break;
case IMP:
nVal = (double) ( ~ll | lr ); eType = SbxLONG; break;
default: break;
}
if( !::rtl::math::isFinite( nVal ) )
pGen->GetParser()->Error( SbERR_MATH_OVERFLOW );
// Den Datentyp wiederherstellen, um Rundungsfehler
// zu killen
if( bCheckType && bBothInt
&& nVal >= SbxMINLNG && nVal <= SbxMAXLNG )
{
// NK-Stellen weg
long n = (long) nVal;
nVal = n;
eType = ( n >= SbxMININT && n <= SbxMAXINT )
? SbxINTEGER : SbxLONG;
}
}
}
}
else if( pLeft && pLeft->IsNumber() )
{
nVal = pLeft->nVal;
delete pLeft;
pLeft = NULL;
eType = SbxDOUBLE;
eNodeType = SbxNUMVAL;
bComposite = sal_False;
switch( eTok )
{
case NEG:
nVal = -nVal; break;
case NOT: {
// Integer-Operation!
sal_Bool err = sal_False;
if( nVal > SbxMAXLNG ) err = sal_True, nVal = SbxMAXLNG;
else
if( nVal < SbxMINLNG ) err = sal_True, nVal = SbxMINLNG;
if( err )
{
pGen->GetParser()->Error( SbERR_MATH_OVERFLOW );
bError = sal_True;
}
nVal = (double) ~((long) nVal);
eType = SbxLONG;
} break;
default: break;
}
}
if( eNodeType == SbxNUMVAL )
{
// Evtl auf INTEGER falten (wg. besserem Opcode)?
if( eType == SbxSINGLE || eType == SbxDOUBLE )
{
double x;
if( nVal >= SbxMINLNG && nVal <= SbxMAXLNG
&& !modf( nVal, &x ) )
eType = SbxLONG;
}
if( eType == SbxLONG && nVal >= SbxMININT && nVal <= SbxMAXINT )
eType = SbxINTEGER;
}
}