blob: 3db5009e508d8a428df3ffc483aa07b15a1753d8 [file] [log] [blame]
/**************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_basegfx.hxx"
#include <basegfx/raster/rasterconvert3d.hxx>
#include <basegfx/polygon/b3dpolygon.hxx>
#include <basegfx/polygon/b3dpolypolygon.hxx>
#include <basegfx/point/b3dpoint.hxx>
//////////////////////////////////////////////////////////////////////////////
// implementations of the 3D raster converter
namespace basegfx
{
void RasterConverter3D::addArea(const B3DPolygon& rFill, const B3DHomMatrix* pViewToEye)
{
const sal_uInt32 nPointCount(rFill.count());
for(sal_uInt32 a(0); a < nPointCount; a++)
{
addEdge(rFill, a, (a + 1) % nPointCount, pViewToEye);
}
}
void RasterConverter3D::addArea(const B3DPolyPolygon& rFill, const B3DHomMatrix* pViewToEye)
{
const sal_uInt32 nPolyCount(rFill.count());
for(sal_uInt32 a(0); a < nPolyCount; a++)
{
addArea(rFill.getB3DPolygon(a), pViewToEye);
}
}
RasterConverter3D::RasterConverter3D()
: InterpolatorProvider3D(),
maLineEntries()
{}
RasterConverter3D::~RasterConverter3D()
{}
void RasterConverter3D::rasterconvertB3DArea(sal_Int32 nStartLine, sal_Int32 nStopLine)
{
if(maLineEntries.size())
{
OSL_ENSURE(nStopLine >= nStartLine, "nStopLine is bigger than nStartLine (!)");
// sort global entries by Y, X once. After this, the vector
// is seen as frozen. Pointers to it's entries will be used in the following code.
::std::sort(maLineEntries.begin(), maLineEntries.end());
// local parameters
::std::vector< RasterConversionLineEntry3D >::iterator aCurrentEntry(maLineEntries.begin());
::std::vector< RasterConversionLineEntry3D* > aCurrentLine;
::std::vector< RasterConversionLineEntry3D* > aNextLine;
::std::vector< RasterConversionLineEntry3D* >::iterator aRasterConversionLineEntry3D;
sal_uInt32 nPairCount(0);
// get scanlines first LineNumber as start
sal_Int32 nLineNumber(::std::max(aCurrentEntry->getY(), nStartLine));
while((aCurrentLine.size() || aCurrentEntry != maLineEntries.end()) && (nLineNumber < nStopLine))
{
// add all entries which start at current line to current scanline
while(aCurrentEntry != maLineEntries.end())
{
const sal_Int32 nCurrentLineNumber(aCurrentEntry->getY());
if(nCurrentLineNumber > nLineNumber)
{
// line is below current one, done (since array is sorted)
break;
}
else
{
// less or equal. Line is above or at current one. Advance it exactly to
// current line
const sal_uInt32 nStep(nLineNumber - nCurrentLineNumber);
if(!nStep || aCurrentEntry->decrementRasterConversionLineEntry3D(nStep))
{
// add when exactly on current line or when incremet to it did not
// completely consume it
if(nStep)
{
aCurrentEntry->incrementRasterConversionLineEntry3D(nStep, *this);
}
aCurrentLine.push_back(&(*(aCurrentEntry)));
}
}
aCurrentEntry++;
}
// sort current scanline using comparator. Only X is used there
// since all entries are already in one processed line. This needs to be done
// everytime since not only new spans may have benn added or old removed,
// but incrementing may also have changed the order
::std::sort(aCurrentLine.begin(), aCurrentLine.end(), lineComparator());
// process current scanline
aRasterConversionLineEntry3D = aCurrentLine.begin();
aNextLine.clear();
nPairCount = 0;
while(aRasterConversionLineEntry3D != aCurrentLine.end())
{
RasterConversionLineEntry3D& rPrevScanRasterConversionLineEntry3D(**aRasterConversionLineEntry3D++);
// look for 2nd span
if(aRasterConversionLineEntry3D != aCurrentLine.end())
{
// work on span from rPrevScanRasterConversionLineEntry3D to aRasterConversionLineEntry3D, fLineNumber is valid
processLineSpan(rPrevScanRasterConversionLineEntry3D, **aRasterConversionLineEntry3D, nLineNumber, nPairCount++);
}
// increment to next line
if(rPrevScanRasterConversionLineEntry3D.decrementRasterConversionLineEntry3D(1))
{
rPrevScanRasterConversionLineEntry3D.incrementRasterConversionLineEntry3D(1, *this);
aNextLine.push_back(&rPrevScanRasterConversionLineEntry3D);
}
}
// copy back next scanline if count has changed
if(aNextLine.size() != aCurrentLine.size())
{
aCurrentLine = aNextLine;
}
// increment fLineNumber
nLineNumber++;
}
}
}
void RasterConverter3D::addEdge(const B3DPolygon& rFill, sal_uInt32 a, sal_uInt32 b, const B3DHomMatrix* pViewToEye)
{
B3DPoint aStart(rFill.getB3DPoint(a));
B3DPoint aEnd(rFill.getB3DPoint(b));
sal_Int32 nYStart(fround(aStart.getY()));
sal_Int32 nYEnd(fround(aEnd.getY()));
if(nYStart != nYEnd)
{
if(nYStart > nYEnd)
{
::std::swap(aStart, aEnd);
::std::swap(nYStart, nYEnd);
::std::swap(a, b);
}
const sal_uInt32 nYDelta(nYEnd - nYStart);
const double fInvYDelta(1.0 / nYDelta);
maLineEntries.push_back(RasterConversionLineEntry3D(
aStart.getX(), (aEnd.getX() - aStart.getX()) * fInvYDelta,
aStart.getZ(), (aEnd.getZ() - aStart.getZ()) * fInvYDelta,
nYStart, nYDelta));
// if extra interpolation data is used, add it to the last created entry
RasterConversionLineEntry3D& rEntry = maLineEntries[maLineEntries.size() - 1];
if(rFill.areBColorsUsed())
{
rEntry.setColorIndex(addColorInterpolator(rFill.getBColor(a), rFill.getBColor(b), fInvYDelta));
}
if(rFill.areNormalsUsed())
{
rEntry.setNormalIndex(addNormalInterpolator(rFill.getNormal(a), rFill.getNormal(b), fInvYDelta));
}
if(rFill.areTextureCoordinatesUsed())
{
if(pViewToEye)
{
const double fEyeA(((*pViewToEye) * aStart).getZ());
const double fEyeB(((*pViewToEye) * aEnd).getZ());
rEntry.setInverseTextureIndex(addInverseTextureInterpolator(
rFill.getTextureCoordinate(a),
rFill.getTextureCoordinate(b),
fEyeA, fEyeB, fInvYDelta));
}
else
{
rEntry.setTextureIndex(addTextureInterpolator(
rFill.getTextureCoordinate(a),
rFill.getTextureCoordinate(b),
fInvYDelta));
}
}
}
}
void RasterConverter3D::rasterconvertB3DEdge(const B3DPolygon& rLine, sal_uInt32 nA, sal_uInt32 nB, sal_Int32 nStartLine, sal_Int32 nStopLine, sal_uInt16 nLineWidth)
{
B3DPoint aStart(rLine.getB3DPoint(nA));
B3DPoint aEnd(rLine.getB3DPoint(nB));
const double fZBufferLineAdd(0x00ff);
static bool bForceToPolygon(false);
if(nLineWidth > 1 || bForceToPolygon)
{
// this is not a hairline anymore, in most cases since it's an oversampled
// hairline to get e.g. AA for Z-Buffering. Create fill geometry.
if(!aStart.equal(aEnd))
{
reset();
maLineEntries.clear();
B2DVector aVector(aEnd.getX() - aStart.getX(), aEnd.getY() - aStart.getY());
aVector.normalize();
const B2DVector aPerpend(getPerpendicular(aVector) * ((static_cast<double>(nLineWidth) + 0.5) * 0.5));
const double fZStartWithAdd(aStart.getZ() + fZBufferLineAdd);
const double fZEndWithAdd(aEnd.getZ() + fZBufferLineAdd);
B3DPolygon aPolygon;
aPolygon.append(B3DPoint(aStart.getX() + aPerpend.getX(), aStart.getY() + aPerpend.getY(), fZStartWithAdd));
aPolygon.append(B3DPoint(aEnd.getX() + aPerpend.getX(), aEnd.getY() + aPerpend.getY(), fZEndWithAdd));
aPolygon.append(B3DPoint(aEnd.getX() - aPerpend.getX(), aEnd.getY() - aPerpend.getY(), fZEndWithAdd));
aPolygon.append(B3DPoint(aStart.getX() - aPerpend.getX(), aStart.getY() - aPerpend.getY(), fZStartWithAdd));
aPolygon.setClosed(true);
addArea(aPolygon, 0);
}
}
else
{
// it's a hairline. Use direct RasterConversionLineEntry creation to
// rasterconvert lines as similar to areas as possible to avoid Z-Fighting
sal_Int32 nYStart(fround(aStart.getY()));
sal_Int32 nYEnd(fround(aEnd.getY()));
if(nYStart == nYEnd)
{
// horizontal line, check X
const sal_Int32 nXStart(static_cast<sal_Int32>(aStart.getX()));
const sal_Int32 nXEnd(static_cast<sal_Int32>(aEnd.getX()));
if(nXStart != nXEnd)
{
reset();
maLineEntries.clear();
// horizontal line, create vertical entries. These will be sorted by
// X anyways, so no need to distinguish the case here
maLineEntries.push_back(RasterConversionLineEntry3D(
aStart.getX(), 0.0,
aStart.getZ() + fZBufferLineAdd, 0.0,
nYStart, 1));
maLineEntries.push_back(RasterConversionLineEntry3D(
aEnd.getX(), 0.0,
aEnd.getZ() + fZBufferLineAdd, 0.0,
nYStart, 1));
}
}
else
{
reset();
maLineEntries.clear();
if(nYStart > nYEnd)
{
::std::swap(aStart, aEnd);
::std::swap(nYStart, nYEnd);
}
const sal_uInt32 nYDelta(static_cast<sal_uInt32>(nYEnd - nYStart));
const double fInvYDelta(1.0 / nYDelta);
// non-horizontal line, create two parallell entries. These will be sorted by
// X anyways, so no need to distinguish the case here
maLineEntries.push_back(RasterConversionLineEntry3D(
aStart.getX(), (aEnd.getX() - aStart.getX()) * fInvYDelta,
aStart.getZ() + fZBufferLineAdd, (aEnd.getZ() - aStart.getZ()) * fInvYDelta,
nYStart, nYDelta));
RasterConversionLineEntry3D& rEntry = maLineEntries[maLineEntries.size() - 1];
// need to choose a X-Distance for the 2nd edge which guarantees all pixels
// of the line to be set. This is exactly the X-Increment for one Y-Step.
// Same is true for Z, so in both cases, add one increment to them. To also
// guarantee one pixel per line, add a minimum of one for X.
const double fDistanceX(fabs(rEntry.getX().getInc()) >= 1.0 ? rEntry.getX().getInc() : 1.0);
maLineEntries.push_back(RasterConversionLineEntry3D(
rEntry.getX().getVal() + fDistanceX, rEntry.getX().getInc(),
rEntry.getZ().getVal() + rEntry.getZ().getInc(), rEntry.getZ().getInc(),
nYStart, nYDelta));
}
}
if(maLineEntries.size())
{
rasterconvertB3DArea(nStartLine, nStopLine);
}
}
void RasterConverter3D::rasterconvertB3DPolyPolygon(const B3DPolyPolygon& rFill, const B3DHomMatrix* pViewToEye, sal_Int32 nStartLine, sal_Int32 nStopLine)
{
reset();
maLineEntries.clear();
addArea(rFill, pViewToEye);
rasterconvertB3DArea(nStartLine, nStopLine);
}
void RasterConverter3D::rasterconvertB3DPolygon(const B3DPolygon& rLine, sal_Int32 nStartLine, sal_Int32 nStopLine, sal_uInt16 nLineWidth)
{
const sal_uInt32 nPointCount(rLine.count());
if(nPointCount)
{
const sal_uInt32 nEdgeCount(rLine.isClosed() ? nPointCount : nPointCount - 1);
for(sal_uInt32 a(0); a < nEdgeCount; a++)
{
rasterconvertB3DEdge(rLine, a, (a + 1) % nPointCount, nStartLine, nStopLine, nLineWidth);
}
}
}
} // end of namespace basegfx
//////////////////////////////////////////////////////////////////////////////
// eof