blob: 7a5b75d47b5ad24bd92c5971175dd1c40bb9dbbd [file] [log] [blame]
/**************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_basegfx.hxx"
#include <basegfx/polygon/b3dpolypolygontools.hxx>
#include <basegfx/range/b3drange.hxx>
#include <basegfx/polygon/b3dpolypolygon.hxx>
#include <basegfx/polygon/b3dpolygon.hxx>
#include <basegfx/polygon/b3dpolygontools.hxx>
#include <numeric>
#include <basegfx/matrix/b3dhommatrix.hxx>
#include <basegfx/numeric/ftools.hxx>
#include <osl/mutex.hxx>
#include <com/sun/star/drawing/DoubleSequence.hpp>
//////////////////////////////////////////////////////////////////////////////
// predefines
#define nMinSegments sal_uInt32(1)
#define nMaxSegments sal_uInt32(512)
//////////////////////////////////////////////////////////////////////////////
namespace basegfx
{
namespace tools
{
// B3DPolyPolygon tools
B3DRange getRange(const B3DPolyPolygon& rCandidate)
{
B3DRange aRetval;
const sal_uInt32 nPolygonCount(rCandidate.count());
for(sal_uInt32 a(0L); a < nPolygonCount; a++)
{
B3DPolygon aCandidate = rCandidate.getB3DPolygon(a);
aRetval.expand(getRange(aCandidate));
}
return aRetval;
}
void applyLineDashing(const B3DPolyPolygon& rCandidate, const ::std::vector<double>& rDotDashArray, B3DPolyPolygon* pLineTarget, B3DPolyPolygon* pGapTarget, double fFullDashDotLen)
{
if(0.0 == fFullDashDotLen && rDotDashArray.size())
{
// calculate fFullDashDotLen from rDotDashArray
fFullDashDotLen = ::std::accumulate(rDotDashArray.begin(), rDotDashArray.end(), 0.0);
}
if(rCandidate.count() && fFullDashDotLen > 0.0)
{
B3DPolyPolygon aLineTarget, aGapTarget;
for(sal_uInt32 a(0L); a < rCandidate.count(); a++)
{
const B3DPolygon aCandidate(rCandidate.getB3DPolygon(a));
applyLineDashing(
aCandidate,
rDotDashArray,
pLineTarget ? &aLineTarget : 0,
pGapTarget ? &aGapTarget : 0,
fFullDashDotLen);
if(pLineTarget)
{
pLineTarget->append(aLineTarget);
}
if(pGapTarget)
{
pGapTarget->append(aGapTarget);
}
}
}
}
B3DPolyPolygon createUnitCubePolyPolygon()
{
static B3DPolyPolygon aRetval;
::osl::Mutex m_mutex;
if(!aRetval.count())
{
B3DPolygon aTemp;
aTemp.append(B3DPoint(0.0, 0.0, 1.0));
aTemp.append(B3DPoint(0.0, 1.0, 1.0));
aTemp.append(B3DPoint(1.0, 1.0, 1.0));
aTemp.append(B3DPoint(1.0, 0.0, 1.0));
aTemp.setClosed(true);
aRetval.append(aTemp);
aTemp.clear();
aTemp.append(B3DPoint(0.0, 0.0, 0.0));
aTemp.append(B3DPoint(0.0, 1.0, 0.0));
aTemp.append(B3DPoint(1.0, 1.0, 0.0));
aTemp.append(B3DPoint(1.0, 0.0, 0.0));
aTemp.setClosed(true);
aRetval.append(aTemp);
aTemp.clear();
aTemp.append(B3DPoint(0.0, 0.0, 0.0));
aTemp.append(B3DPoint(0.0, 0.0, 1.0));
aRetval.append(aTemp);
aTemp.clear();
aTemp.append(B3DPoint(0.0, 1.0, 0.0));
aTemp.append(B3DPoint(0.0, 1.0, 1.0));
aRetval.append(aTemp);
aTemp.clear();
aTemp.append(B3DPoint(1.0, 1.0, 0.0));
aTemp.append(B3DPoint(1.0, 1.0, 1.0));
aRetval.append(aTemp);
aTemp.clear();
aTemp.append(B3DPoint(1.0, 0.0, 0.0));
aTemp.append(B3DPoint(1.0, 0.0, 1.0));
aRetval.append(aTemp);
}
return aRetval;
}
B3DPolyPolygon createUnitCubeFillPolyPolygon()
{
static B3DPolyPolygon aRetval;
::osl::Mutex m_mutex;
if(!aRetval.count())
{
B3DPolygon aTemp;
// all points
const B3DPoint A(0.0, 0.0, 0.0);
const B3DPoint B(0.0, 1.0, 0.0);
const B3DPoint C(1.0, 1.0, 0.0);
const B3DPoint D(1.0, 0.0, 0.0);
const B3DPoint E(0.0, 0.0, 1.0);
const B3DPoint F(0.0, 1.0, 1.0);
const B3DPoint G(1.0, 1.0, 1.0);
const B3DPoint H(1.0, 0.0, 1.0);
// create bottom
aTemp.append(D);
aTemp.append(A);
aTemp.append(E);
aTemp.append(H);
aTemp.setClosed(true);
aRetval.append(aTemp);
// create front
aTemp.clear();
aTemp.append(B);
aTemp.append(A);
aTemp.append(D);
aTemp.append(C);
aTemp.setClosed(true);
aRetval.append(aTemp);
// create left
aTemp.clear();
aTemp.append(E);
aTemp.append(A);
aTemp.append(B);
aTemp.append(F);
aTemp.setClosed(true);
aRetval.append(aTemp);
// create top
aTemp.clear();
aTemp.append(C);
aTemp.append(G);
aTemp.append(F);
aTemp.append(B);
aTemp.setClosed(true);
aRetval.append(aTemp);
// create right
aTemp.clear();
aTemp.append(H);
aTemp.append(G);
aTemp.append(C);
aTemp.append(D);
aTemp.setClosed(true);
aRetval.append(aTemp);
// create back
aTemp.clear();
aTemp.append(F);
aTemp.append(G);
aTemp.append(H);
aTemp.append(E);
aTemp.setClosed(true);
aRetval.append(aTemp);
}
return aRetval;
}
B3DPolyPolygon createCubePolyPolygonFromB3DRange( const B3DRange& rRange)
{
B3DPolyPolygon aRetval;
if(!rRange.isEmpty())
{
aRetval = createUnitCubePolyPolygon();
B3DHomMatrix aTrans;
aTrans.scale(rRange.getWidth(), rRange.getHeight(), rRange.getDepth());
aTrans.translate(rRange.getMinX(), rRange.getMinY(), rRange.getMinZ());
aRetval.transform(aTrans);
aRetval.removeDoublePoints();
}
return aRetval;
}
B3DPolyPolygon createCubeFillPolyPolygonFromB3DRange( const B3DRange& rRange)
{
B3DPolyPolygon aRetval;
if(!rRange.isEmpty())
{
aRetval = createUnitCubeFillPolyPolygon();
B3DHomMatrix aTrans;
aTrans.scale(rRange.getWidth(), rRange.getHeight(), rRange.getDepth());
aTrans.translate(rRange.getMinX(), rRange.getMinY(), rRange.getMinZ());
aRetval.transform(aTrans);
aRetval.removeDoublePoints();
}
return aRetval;
}
// helper for getting the 3D Point from given cartesian coordiantes. fVer is defined from
// [F_PI2 .. -F_PI2], fHor from [0.0 .. F_2PI]
inline B3DPoint getPointFromCartesian(double fVer, double fHor)
{
const double fCosHor(cos(fHor));
return B3DPoint(fCosHor * cos(fVer), sin(fHor), fCosHor * -sin(fVer));
}
B3DPolyPolygon createUnitSpherePolyPolygon(
sal_uInt32 nHorSeg, sal_uInt32 nVerSeg,
double fVerStart, double fVerStop,
double fHorStart, double fHorStop)
{
B3DPolyPolygon aRetval;
sal_uInt32 a, b;
if(!nHorSeg)
{
nHorSeg = fround(fabs(fHorStop - fHorStart) / (F_2PI / 24.0));
}
// min/max limitations
nHorSeg = ::std::min(nMaxSegments, ::std::max(nMinSegments, nHorSeg));
if(!nVerSeg)
{
nVerSeg = fround(fabs(fVerStop - fVerStart) / (F_2PI / 24.0));
}
// min/max limitations
nVerSeg = ::std::min(nMaxSegments, ::std::max(nMinSegments, nVerSeg));
// create constants
const double fVerDiffPerStep((fVerStop - fVerStart) / (double)nVerSeg);
const double fHorDiffPerStep((fHorStop - fHorStart) / (double)nHorSeg);
bool bHorClosed(fTools::equal(fHorStop - fHorStart, F_2PI));
bool bVerFromTop(fTools::equal(fVerStart, F_PI2));
bool bVerToBottom(fTools::equal(fVerStop, -F_PI2));
// create horizontal rings
const sal_uInt32 nLoopVerInit(bVerFromTop ? 1L : 0L);
const sal_uInt32 nLoopVerLimit(bVerToBottom ? nVerSeg : nVerSeg + 1L);
const sal_uInt32 nLoopHorLimit(bHorClosed ? nHorSeg : nHorSeg + 1L);
for(a = nLoopVerInit; a < nLoopVerLimit; a++)
{
const double fVer(fVerStart + ((double)(a) * fVerDiffPerStep));
B3DPolygon aNew;
for(b = 0L; b < nLoopHorLimit; b++)
{
const double fHor(fHorStart + ((double)(b) * fHorDiffPerStep));
aNew.append(getPointFromCartesian(fHor, fVer));
}
aNew.setClosed(bHorClosed);
aRetval.append(aNew);
}
// create vertical half-rings
for(a = 0L; a < nLoopHorLimit; a++)
{
const double fHor(fHorStart + ((double)(a) * fHorDiffPerStep));
B3DPolygon aNew;
if(bVerFromTop)
{
aNew.append(B3DPoint(0.0, 1.0, 0.0));
}
for(b = nLoopVerInit; b < nLoopVerLimit; b++)
{
const double fVer(fVerStart + ((double)(b) * fVerDiffPerStep));
aNew.append(getPointFromCartesian(fHor, fVer));
}
if(bVerToBottom)
{
aNew.append(B3DPoint(0.0, -1.0, 0.0));
}
aRetval.append(aNew);
}
return aRetval;
}
B3DPolyPolygon createSpherePolyPolygonFromB3DRange( const B3DRange& rRange,
sal_uInt32 nHorSeg, sal_uInt32 nVerSeg,
double fVerStart, double fVerStop,
double fHorStart, double fHorStop)
{
B3DPolyPolygon aRetval(createUnitSpherePolyPolygon(nHorSeg, nVerSeg, fVerStart, fVerStop, fHorStart, fHorStop));
if(aRetval.count())
{
// move and scale whole construct which is now in [-1.0 .. 1.0] in all directions
B3DHomMatrix aTrans;
aTrans.translate(1.0, 1.0, 1.0);
aTrans.scale(rRange.getWidth() / 2.0, rRange.getHeight() / 2.0, rRange.getDepth() / 2.0);
aTrans.translate(rRange.getMinX(), rRange.getMinY(), rRange.getMinZ());
aRetval.transform(aTrans);
}
return aRetval;
}
B3DPolyPolygon createUnitSphereFillPolyPolygon(
sal_uInt32 nHorSeg, sal_uInt32 nVerSeg,
bool bNormals,
double fVerStart, double fVerStop,
double fHorStart, double fHorStop)
{
B3DPolyPolygon aRetval;
if(!nHorSeg)
{
nHorSeg = fround(fabs(fHorStop - fHorStart) / (F_2PI / 24.0));
}
// min/max limitations
nHorSeg = ::std::min(nMaxSegments, ::std::max(nMinSegments, nHorSeg));
if(!nVerSeg)
{
nVerSeg = fround(fabs(fVerStop - fVerStart) / (F_2PI / 24.0));
}
// min/max limitations
nVerSeg = ::std::min(nMaxSegments, ::std::max(nMinSegments, nVerSeg));
// vertical loop
for(sal_uInt32 a(0L); a < nVerSeg; a++)
{
const double fVer(fVerStart + (((fVerStop - fVerStart) * a) / nVerSeg));
const double fVer2(fVerStart + (((fVerStop - fVerStart) * (a + 1)) / nVerSeg));
// horizontal loop
for(sal_uInt32 b(0L); b < nHorSeg; b++)
{
const double fHor(fHorStart + (((fHorStop - fHorStart) * b) / nHorSeg));
const double fHor2(fHorStart + (((fHorStop - fHorStart) * (b + 1)) / nHorSeg));
B3DPolygon aNew;
aNew.append(getPointFromCartesian(fHor, fVer));
aNew.append(getPointFromCartesian(fHor2, fVer));
aNew.append(getPointFromCartesian(fHor2, fVer2));
aNew.append(getPointFromCartesian(fHor, fVer2));
if(bNormals)
{
for(sal_uInt32 c(0L); c < aNew.count(); c++)
{
aNew.setNormal(c, ::basegfx::B3DVector(aNew.getB3DPoint(c)));
}
}
aNew.setClosed(true);
aRetval.append(aNew);
}
}
return aRetval;
}
B3DPolyPolygon createSphereFillPolyPolygonFromB3DRange( const B3DRange& rRange,
sal_uInt32 nHorSeg, sal_uInt32 nVerSeg,
bool bNormals,
double fVerStart, double fVerStop,
double fHorStart, double fHorStop)
{
B3DPolyPolygon aRetval(createUnitSphereFillPolyPolygon(nHorSeg, nVerSeg, bNormals, fVerStart, fVerStop, fHorStart, fHorStop));
if(aRetval.count())
{
// move and scale whole construct which is now in [-1.0 .. 1.0] in all directions
B3DHomMatrix aTrans;
aTrans.translate(1.0, 1.0, 1.0);
aTrans.scale(rRange.getWidth() / 2.0, rRange.getHeight() / 2.0, rRange.getDepth() / 2.0);
aTrans.translate(rRange.getMinX(), rRange.getMinY(), rRange.getMinZ());
aRetval.transform(aTrans);
}
return aRetval;
}
B3DPolyPolygon applyDefaultNormalsSphere( const B3DPolyPolygon& rCandidate, const B3DPoint& rCenter)
{
B3DPolyPolygon aRetval;
for(sal_uInt32 a(0L); a < rCandidate.count(); a++)
{
aRetval.append(applyDefaultNormalsSphere(rCandidate.getB3DPolygon(a), rCenter));
}
return aRetval;
}
B3DPolyPolygon invertNormals( const B3DPolyPolygon& rCandidate)
{
B3DPolyPolygon aRetval;
for(sal_uInt32 a(0L); a < rCandidate.count(); a++)
{
aRetval.append(invertNormals(rCandidate.getB3DPolygon(a)));
}
return aRetval;
}
B3DPolyPolygon applyDefaultTextureCoordinatesParallel( const B3DPolyPolygon& rCandidate, const B3DRange& rRange, bool bChangeX, bool bChangeY)
{
B3DPolyPolygon aRetval;
for(sal_uInt32 a(0L); a < rCandidate.count(); a++)
{
aRetval.append(applyDefaultTextureCoordinatesParallel(rCandidate.getB3DPolygon(a), rRange, bChangeX, bChangeY));
}
return aRetval;
}
B3DPolyPolygon applyDefaultTextureCoordinatesSphere( const B3DPolyPolygon& rCandidate, const B3DPoint& rCenter, bool bChangeX, bool bChangeY)
{
B3DPolyPolygon aRetval;
for(sal_uInt32 a(0L); a < rCandidate.count(); a++)
{
aRetval.append(applyDefaultTextureCoordinatesSphere(rCandidate.getB3DPolygon(a), rCenter, bChangeX, bChangeY));
}
return aRetval;
}
bool isInside(const B3DPolyPolygon& rCandidate, const B3DPoint& rPoint, bool bWithBorder)
{
const sal_uInt32 nPolygonCount(rCandidate.count());
if(1L == nPolygonCount)
{
return isInside(rCandidate.getB3DPolygon(0), rPoint, bWithBorder);
}
else
{
sal_Int32 nInsideCount(0);
for(sal_uInt32 a(0); a < nPolygonCount; a++)
{
const B3DPolygon aPolygon(rCandidate.getB3DPolygon(a));
const bool bInside(isInside(aPolygon, rPoint, bWithBorder));
if(bInside)
{
nInsideCount++;
}
}
return (nInsideCount % 2L);
}
}
//////////////////////////////////////////////////////////////////////
// comparators with tolerance for 3D PolyPolygons
bool equal(const B3DPolyPolygon& rCandidateA, const B3DPolyPolygon& rCandidateB, const double& rfSmallValue)
{
const sal_uInt32 nPolygonCount(rCandidateA.count());
if(nPolygonCount != rCandidateB.count())
return false;
for(sal_uInt32 a(0); a < nPolygonCount; a++)
{
const B3DPolygon aCandidate(rCandidateA.getB3DPolygon(a));
if(!equal(aCandidate, rCandidateB.getB3DPolygon(a), rfSmallValue))
return false;
}
return true;
}
bool equal(const B3DPolyPolygon& rCandidateA, const B3DPolyPolygon& rCandidateB)
{
const double fSmallValue(fTools::getSmallValue());
return equal(rCandidateA, rCandidateB, fSmallValue);
}
/// converters for com::sun::star::drawing::PolyPolygonShape3D
B3DPolyPolygon UnoPolyPolygonShape3DToB3DPolyPolygon(
const com::sun::star::drawing::PolyPolygonShape3D& rPolyPolygonShape3DSource,
bool bCheckClosed)
{
B3DPolyPolygon aRetval;
const sal_Int32 nOuterSequenceCount(rPolyPolygonShape3DSource.SequenceX.getLength());
if(nOuterSequenceCount)
{
OSL_ENSURE(nOuterSequenceCount == rPolyPolygonShape3DSource.SequenceY.getLength()
&& nOuterSequenceCount == rPolyPolygonShape3DSource.SequenceZ.getLength(),
"UnoPolyPolygonShape3DToB3DPolygon: Not all double sequences have the same length (!)");
const com::sun::star::drawing::DoubleSequence* pInnerSequenceX = rPolyPolygonShape3DSource.SequenceX.getConstArray();
const com::sun::star::drawing::DoubleSequence* pInnerSequenceY = rPolyPolygonShape3DSource.SequenceY.getConstArray();
const com::sun::star::drawing::DoubleSequence* pInnerSequenceZ = rPolyPolygonShape3DSource.SequenceZ.getConstArray();
for(sal_Int32 a(0); a < nOuterSequenceCount; a++)
{
basegfx::B3DPolygon aNewPolygon;
const sal_Int32 nInnerSequenceCount(pInnerSequenceX->getLength());
OSL_ENSURE(nInnerSequenceCount == pInnerSequenceY->getLength()
&& nInnerSequenceCount == pInnerSequenceZ->getLength(),
"UnoPolyPolygonShape3DToB3DPolygon: Not all double sequences have the same length (!)");
const double* pArrayX = pInnerSequenceX->getConstArray();
const double* pArrayY = pInnerSequenceY->getConstArray();
const double* pArrayZ = pInnerSequenceZ->getConstArray();
for(sal_Int32 b(0); b < nInnerSequenceCount; b++)
{
aNewPolygon.append(basegfx::B3DPoint(*pArrayX++,*pArrayY++,*pArrayZ++));
}
pInnerSequenceX++;
pInnerSequenceY++;
pInnerSequenceZ++;
// #i101520# correction is needed for imported polygons of old format,
// see callers
if(bCheckClosed)
{
basegfx::tools::checkClosed(aNewPolygon);
}
aRetval.append(aNewPolygon);
}
}
return aRetval;
}
void B3DPolyPolygonToUnoPolyPolygonShape3D(
const B3DPolyPolygon& rPolyPolygonSource,
com::sun::star::drawing::PolyPolygonShape3D& rPolyPolygonShape3DRetval)
{
const sal_uInt32 nPolygonCount(rPolyPolygonSource.count());
if(nPolygonCount)
{
rPolyPolygonShape3DRetval.SequenceX.realloc(nPolygonCount);
rPolyPolygonShape3DRetval.SequenceY.realloc(nPolygonCount);
rPolyPolygonShape3DRetval.SequenceZ.realloc(nPolygonCount);
com::sun::star::drawing::DoubleSequence* pOuterSequenceX = rPolyPolygonShape3DRetval.SequenceX.getArray();
com::sun::star::drawing::DoubleSequence* pOuterSequenceY = rPolyPolygonShape3DRetval.SequenceY.getArray();
com::sun::star::drawing::DoubleSequence* pOuterSequenceZ = rPolyPolygonShape3DRetval.SequenceZ.getArray();
for(sal_uInt32 a(0); a < nPolygonCount; a++)
{
const basegfx::B3DPolygon aPoly(rPolyPolygonSource.getB3DPolygon(a));
const sal_uInt32 nPointCount(aPoly.count());
if(nPointCount)
{
const bool bIsClosed(aPoly.isClosed());
const sal_uInt32 nTargetCount(bIsClosed ? nPointCount + 1 : nPointCount);
pOuterSequenceX->realloc(nTargetCount);
pOuterSequenceY->realloc(nTargetCount);
pOuterSequenceZ->realloc(nTargetCount);
double* pInnerSequenceX = pOuterSequenceX->getArray();
double* pInnerSequenceY = pOuterSequenceY->getArray();
double* pInnerSequenceZ = pOuterSequenceZ->getArray();
for(sal_uInt32 b(0); b < nPointCount; b++)
{
const basegfx::B3DPoint aPoint(aPoly.getB3DPoint(b));
*pInnerSequenceX++ = aPoint.getX();
*pInnerSequenceY++ = aPoint.getY();
*pInnerSequenceZ++ = aPoint.getZ();
}
if(bIsClosed)
{
const basegfx::B3DPoint aPoint(aPoly.getB3DPoint(0));
*pInnerSequenceX++ = aPoint.getX();
*pInnerSequenceY++ = aPoint.getY();
*pInnerSequenceZ++ = aPoint.getZ();
}
}
else
{
pOuterSequenceX->realloc(0);
pOuterSequenceY->realloc(0);
pOuterSequenceZ->realloc(0);
}
pOuterSequenceX++;
pOuterSequenceY++;
pOuterSequenceZ++;
}
}
else
{
rPolyPolygonShape3DRetval.SequenceX.realloc(0);
rPolyPolygonShape3DRetval.SequenceY.realloc(0);
rPolyPolygonShape3DRetval.SequenceZ.realloc(0);
}
}
} // end of namespace tools
} // end of namespace basegfx
//////////////////////////////////////////////////////////////////////////////
// eof