blob: b3832fe413ae5125b777dda6602aac39ba051782 [file] [log] [blame]
/**************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
#ifndef _HOMMATRIX_TEMPLATE_HXX
#define _HOMMATRIX_TEMPLATE_HXX
#include <sal/types.h>
#include <basegfx/numeric/ftools.hxx>
#include <math.h>
#include <string.h>
namespace basegfx
{
namespace internal
{
inline double implGetDefaultValue(sal_uInt16 nRow, sal_uInt16 nColumn)
{
if(nRow == nColumn)
return 1.0;
return 0.0;
}
template < unsigned int _RowSize > class ImplMatLine
{
enum { RowSize = _RowSize };
double mfValue[RowSize];
public:
ImplMatLine()
{
}
ImplMatLine(sal_uInt16 nRow, ImplMatLine< RowSize >* pToBeCopied = 0L)
{
if(pToBeCopied)
{
memcpy(&mfValue, pToBeCopied, sizeof(double) * RowSize);
}
else
{
for(sal_uInt16 a(0); a < RowSize; a++)
{
mfValue[a] = implGetDefaultValue(nRow, a);
}
}
}
double get(sal_uInt16 nColumn) const
{
return mfValue[nColumn];
}
void set(sal_uInt16 nColumn, const double& rValue)
{
mfValue[nColumn] = rValue;
}
};
template < unsigned int _RowSize > class ImplHomMatrixTemplate
{
enum { RowSize = _RowSize };
ImplMatLine< RowSize > maLine[RowSize - 1];
ImplMatLine< RowSize >* mpLine;
public:
// Is last line used?
bool isLastLineDefault() const
{
if(!mpLine)
return true;
for(sal_uInt16 a(0); a < RowSize; a++)
{
const double fDefault(implGetDefaultValue((RowSize - 1), a));
const double fLineValue(mpLine->get(a));
if(!::basegfx::fTools::equal(fDefault, fLineValue))
{
return false;
}
}
// reset last line, it equals default
delete ((ImplHomMatrixTemplate< RowSize >*)this)->mpLine;
((ImplHomMatrixTemplate< RowSize >*)this)->mpLine = 0L;
return true;
}
ImplHomMatrixTemplate()
: mpLine(0L)
{
// complete initialization with identity matrix, all lines
// were initialized with a trailing 1 followed by 0's.
for(sal_uInt16 a(0); a < RowSize-1; a++)
{
for(sal_uInt16 b(0); b < RowSize; b++)
maLine[a].set(b, implGetDefaultValue(a, b) );
}
}
ImplHomMatrixTemplate(const ImplHomMatrixTemplate& rToBeCopied)
: mpLine(0L)
{
// complete initialization using copy
for(sal_uInt16 a(0); a < (RowSize - 1); a++)
{
memcpy(&maLine[a], &rToBeCopied.maLine[a], sizeof(ImplMatLine< RowSize >));
}
if(rToBeCopied.mpLine)
{
mpLine = new ImplMatLine< RowSize >((RowSize - 1), rToBeCopied.mpLine);
}
}
~ImplHomMatrixTemplate()
{
if(mpLine)
{
delete mpLine;
}
}
sal_uInt16 getEdgeLength() const { return RowSize; }
double get(sal_uInt16 nRow, sal_uInt16 nColumn) const
{
if(nRow < (RowSize - 1))
{
return maLine[nRow].get(nColumn);
}
if(mpLine)
{
return mpLine->get(nColumn);
}
return implGetDefaultValue((RowSize - 1), nColumn);
}
void set(sal_uInt16 nRow, sal_uInt16 nColumn, const double& rValue)
{
if(nRow < (RowSize - 1))
{
maLine[nRow].set(nColumn, rValue);
}
else if(mpLine)
{
mpLine->set(nColumn, rValue);
}
else
{
const double fDefault(implGetDefaultValue((RowSize - 1), nColumn));
if(!::basegfx::fTools::equal(fDefault, rValue))
{
mpLine = new ImplMatLine< RowSize >((RowSize - 1), 0L);
mpLine->set(nColumn, rValue);
}
}
}
void testLastLine()
{
if(mpLine)
{
bool bNecessary(false);
for(sal_uInt16 a(0);!bNecessary && a < RowSize; a++)
{
const double fDefault(implGetDefaultValue((RowSize - 1), a));
const double fLineValue(mpLine->get(a));
if(!::basegfx::fTools::equal(fDefault, fLineValue))
{
bNecessary = true;
}
}
if(!bNecessary)
{
delete mpLine;
mpLine = 0L;
}
}
}
// Left-upper decompositon
bool ludcmp(sal_uInt16 nIndex[], sal_Int16& nParity)
{
double fBig, fSum, fDum;
double fStorage[RowSize];
sal_uInt16 a, b, c;
// #i30874# Initialize nAMax (compiler warns)
sal_uInt16 nAMax = 0;
nParity = 1;
// Calc the max of each line. If a line is empty,
// stop immediately since matrix is not invertible then.
for(a = 0; a < RowSize; a++)
{
fBig = 0.0;
for(b = 0; b < RowSize; b++)
{
double fTemp(fabs(get(a, b)));
if(::basegfx::fTools::more(fTemp, fBig))
{
fBig = fTemp;
}
}
if(::basegfx::fTools::equalZero(fBig))
{
return false;
}
fStorage[a] = 1.0 / fBig;
}
// start normalizing
for(b = 0; b < RowSize; b++)
{
for(a = 0; a < b; a++)
{
fSum = get(a, b);
for(c = 0; c < a; c++)
{
fSum -= get(a, c) * get(c, b);
}
set(a, b, fSum);
}
fBig = 0.0;
for(a = b; a < RowSize; a++)
{
fSum = get(a, b);
for(c = 0; c < b; c++)
{
fSum -= get(a, c) * get(c, b);
}
set(a, b, fSum);
fDum = fStorage[a] * fabs(fSum);
if(::basegfx::fTools::moreOrEqual(fDum, fBig))
{
fBig = fDum;
nAMax = a;
}
}
if(b != nAMax)
{
for(c = 0; c < RowSize; c++)
{
fDum = get(nAMax, c);
set(nAMax, c, get(b, c));
set(b, c, fDum);
}
nParity = -nParity;
fStorage[nAMax] = fStorage[b];
}
nIndex[b] = nAMax;
// here the failure of precision occurs
const double fValBB(fabs(get(b, b)));
if(::basegfx::fTools::equalZero(fValBB))
{
return false;
}
if(b != (RowSize - 1))
{
fDum = 1.0 / get(b, b);
for(a = b + 1; a < RowSize; a++)
{
set(a, b, get(a, b) * fDum);
}
}
}
return true;
}
void lubksb(const sal_uInt16 nIndex[], double fRow[]) const
{
sal_uInt16 b, ip;
sal_Int16 a, a2 = -1;
double fSum;
for(a = 0; a < RowSize; a++)
{
ip = nIndex[a];
fSum = fRow[ip];
fRow[ip] = fRow[a];
if(a2 >= 0)
{
for(b = a2; b < a; b++)
{
fSum -= get(a, b) * fRow[b];
}
}
else if(!::basegfx::fTools::equalZero(fSum))
{
a2 = a;
}
fRow[a] = fSum;
}
for(a = (RowSize - 1); a >= 0; a--)
{
fSum = fRow[a];
for(b = a + 1; b < RowSize; b++)
{
fSum -= get(a, b) * fRow[b];
}
const double fValueAA(get(a, a));
if(!::basegfx::fTools::equalZero(fValueAA))
{
fRow[a] = fSum / get(a, a);
}
}
}
bool isIdentity() const
{
// last line needs no testing if not existing
const sal_uInt16 nMaxLine(
sal::static_int_cast<sal_uInt16>(mpLine ? RowSize : (RowSize - 1)) );
for(sal_uInt16 a(0); a < nMaxLine; a++)
{
for(sal_uInt16 b(0); b < RowSize; b++)
{
const double fDefault(implGetDefaultValue(a, b));
const double fValueAB(get(a, b));
if(!::basegfx::fTools::equal(fDefault, fValueAB))
{
return false;
}
}
}
return true;
}
bool isInvertible() const
{
ImplHomMatrixTemplate aWork(*this);
sal_uInt16 nIndex[RowSize];
sal_Int16 nParity;
return aWork.ludcmp(nIndex, nParity);
}
bool isNormalized() const
{
if(!mpLine)
return true;
const double fHomValue(get((RowSize - 1), (RowSize - 1)));
if(::basegfx::fTools::equalZero(fHomValue))
{
return true;
}
const double fOne(1.0);
if(::basegfx::fTools::equal(fOne, fHomValue))
{
return true;
}
return false;
}
void doInvert(const ImplHomMatrixTemplate& rWork, const sal_uInt16 nIndex[])
{
double fArray[RowSize];
for(sal_uInt16 a(0); a < RowSize; a++)
{
// prepare line
sal_uInt16 b;
for( b = 0; b < RowSize; b++)
{
fArray[b] = implGetDefaultValue(a, b);
}
// expand line
rWork.lubksb(nIndex, fArray);
// copy line transposed to this matrix
for( b = 0; b < RowSize; b++)
{
set(b, a, fArray[b]);
}
}
// evtl. get rid of last matrix line
testLastLine();
}
void doNormalize()
{
if(mpLine)
{
const double fHomValue(get((RowSize - 1), (RowSize - 1)));
for(sal_uInt16 a(0); a < RowSize; a++)
{
for(sal_uInt16 b(0); b < RowSize; b++)
{
set(a, b, get(a, b) / fHomValue);
}
}
// evtl. get rid of last matrix line
testLastLine();
}
}
double doDeterminant() const
{
ImplHomMatrixTemplate aWork(*this);
sal_uInt16 nIndex[RowSize];
sal_Int16 nParity;
double fRetval(0.0);
if(aWork.ludcmp(nIndex, nParity))
{
fRetval = (double)nParity;
// last line needs no multiply if not existing; default value would be 1.
const sal_uInt16 nMaxLine(
sal::static_int_cast<sal_uInt16>(aWork.mpLine ? RowSize : (RowSize - 1)) );
for(sal_uInt16 a(0); a < nMaxLine; a++)
{
fRetval *= aWork.get(a, a);
}
}
return fRetval;
}
double doTrace() const
{
double fTrace = (mpLine) ? 0.0 : 1.0;
const sal_uInt16 nMaxLine(
sal::static_int_cast<sal_uInt16>(mpLine ? RowSize : (RowSize - 1)) );
for(sal_uInt16 a(0); a < nMaxLine; a++)
{
fTrace += get(a, a);
}
return fTrace;
}
void doTranspose()
{
for(sal_uInt16 a(0); a < (RowSize - 1); a++)
{
for(sal_uInt16 b(a + 1); b < RowSize; b++)
{
const double fTemp(get(a, b));
set(a, b, get(b, a));
set(b, a, fTemp);
}
}
testLastLine();
}
void doAddMatrix(const ImplHomMatrixTemplate& rMat)
{
for(sal_uInt16 a(0); a < RowSize; a++)
{
for(sal_uInt16 b(0); b < RowSize; b++)
{
set(a, b, get(a, b) + rMat.get(a, b));
}
}
testLastLine();
}
void doSubMatrix(const ImplHomMatrixTemplate& rMat)
{
for(sal_uInt16 a(0); a < RowSize; a++)
{
for(sal_uInt16 b(0); b < RowSize; b++)
{
set(a, b, get(a, b) - rMat.get(a, b));
}
}
testLastLine();
}
void doMulMatrix(const double& rfValue)
{
for(sal_uInt16 a(0); a < RowSize; a++)
{
for(sal_uInt16 b(0); b < RowSize; b++)
{
set(a, b, get(a, b) * rfValue);
}
}
testLastLine();
}
void doMulMatrix(const ImplHomMatrixTemplate& rMat)
{
// create a copy as source for the original values
const ImplHomMatrixTemplate aCopy(*this);
// TODO: maybe optimize cases where last line is [0 0 1].
double fValue(0.0);
for(sal_uInt16 a(0); a < RowSize; ++a)
{
for(sal_uInt16 b(0); b < RowSize; ++b)
{
fValue = 0.0;
for(sal_uInt16 c(0); c < RowSize; ++c)
fValue += aCopy.get(c, b) * rMat.get(a, c);
set(a, b, fValue);
}
}
testLastLine();
}
bool isEqual(const ImplHomMatrixTemplate& rMat) const
{
const sal_uInt16 nMaxLine(
sal::static_int_cast<sal_uInt16>((mpLine || rMat.mpLine) ? RowSize : (RowSize - 1)) );
for(sal_uInt16 a(0); a < nMaxLine; a++)
{
for(sal_uInt16 b(0); b < RowSize; b++)
{
const double fValueA(get(a, b));
const double fValueB(rMat.get(a, b));
if(!::basegfx::fTools::equal(fValueA, fValueB))
{
return false;
}
}
}
return true;
}
};
} // namespace internal
} // namespace basegfx
#endif /* _HOMMATRIX_TEMPLATE_HXX */