blob: 7a41d21428d5c73657564697c420344ff4a74c0a [file] [log] [blame]
/**************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
#ifndef _BGFX_POLYGON_B2DPOLYGONTOOLS_HXX
#define _BGFX_POLYGON_B2DPOLYGONTOOLS_HXX
#include <basegfx/point/b2dpoint.hxx>
#include <basegfx/vector/b2dvector.hxx>
#include <basegfx/range/b2drectangle.hxx>
#include <basegfx/polygon/b2dpolypolygon.hxx>
#include <basegfx/polygon/b3dpolygon.hxx>
#include <com/sun/star/drawing/PointSequence.hpp>
#include <com/sun/star/drawing/FlagSequence.hpp>
#include <vector>
//////////////////////////////////////////////////////////////////////////////
namespace basegfx
{
// predefinitions
class B2DPolygon;
class B2DRange;
namespace tools
{
// B2DPolygon tools
// open/close with point add/remove and control point corrections
void openWithGeometryChange(B2DPolygon& rCandidate);
void closeWithGeometryChange(B2DPolygon& rCandidate);
/** Check if given polygon is closed.
This is kind of a 'classic' method to support old polygon
definitions. Those old polygon definitions define the
closed state of the polygon using identical start and
endpoints. This method corrects this (removes double
start/end points) and sets the Closed()-state of the
polygon correctly.
*/
void checkClosed(B2DPolygon& rCandidate);
// Get successor and predecessor indices. Returning the same index means there
// is none. Same for successor.
sal_uInt32 getIndexOfPredecessor(sal_uInt32 nIndex, const B2DPolygon& rCandidate);
sal_uInt32 getIndexOfSuccessor(sal_uInt32 nIndex, const B2DPolygon& rCandidate);
// Get orientation of Polygon
B2VectorOrientation getOrientation(const B2DPolygon& rCandidate);
// isInside tests for B2dPoint and other B2dPolygon. On border is not inside as long as
// not true is given in bWithBorder flag.
bool isInside(const B2DPolygon& rCandidate, const B2DPoint& rPoint, bool bWithBorder = false);
bool isInside(const B2DPolygon& rCandidate, const B2DPolygon& rPolygon, bool bWithBorder = false);
/** Get the range of a polygon including bezier control points
For detailed discussion, see B2DPolygon::getB2DRange()
@param rCandidate
The B2DPolygon eventually containing bezier segments
@return
The outer range of the bezier curve containing bezier control points
*/
B2DRange getRangeWithControlPoints(const B2DPolygon& rCandidate);
/** Get the range of a polygon
This method creates the outer range of the subdivided bezier curve.
For detailed discussion see B2DPolygon::getB2DRange()
@param rCandidate
The B2DPolygon eventually containing bezier segments
@return
The outer range of the bezier curve
*/
B2DRange getRange(const B2DPolygon& rCandidate);
// get signed area of polygon
double getSignedArea(const B2DPolygon& rCandidate);
// get area of polygon
double getArea(const B2DPolygon& rCandidate);
/** get length of polygon edge from point nIndex to nIndex + 1 */
double getEdgeLength(const B2DPolygon& rCandidate, sal_uInt32 nIndex);
/** get length of polygon */
double getLength(const B2DPolygon& rCandidate);
// get position on polygon for absolute given distance. If
// length is given, it is assumed the correct polygon length, if 0.0 it is calculated
// using getLength(...)
B2DPoint getPositionAbsolute(const B2DPolygon& rCandidate, double fDistance, double fLength = 0.0);
// get position on polygon for relative given distance in range [0.0 .. 1.0]. If
// length is given, it is assumed the correct polygon length, if 0.0 it is calculated
// using getLength(...)
B2DPoint getPositionRelative(const B2DPolygon& rCandidate, double fDistance, double fLength = 0.0);
// get a snippet from given polygon for absolute distances. The polygon is assumed
// to be opened (not closed). fFrom and fTo need to be in range [0.0 .. fLength], where
// fTo >= fFrom. If length is given, it is assumed the correct polygon length,
// if 0.0 it is calculated using getLength(...)
B2DPolygon getSnippetAbsolute(const B2DPolygon& rCandidate, double fFrom, double fTo, double fLength = 0.0);
// get a snippet from given polygon for relative distances. The polygon is assumed
// to be opened (not closed). fFrom and fTo need to be in range [0.0 .. 1.0], where
// fTo >= fFrom. If length is given, it is assumed the correct polygon length,
// if 0.0 it is calculated using getLength(...)
B2DPolygon getSnippetRelative(const B2DPolygon& rCandidate, double fFrom = 0.0, double fTo = 1.0, double fLength = 0.0);
// Continuity check for point with given index
B2VectorContinuity getContinuityInPoint(const B2DPolygon& rCandidate, sal_uInt32 nIndex);
// Subdivide all contained curves. Use distanceBound value if given.
B2DPolygon adaptiveSubdivideByDistance(const B2DPolygon& rCandidate, double fDistanceBound = 0.0);
// Subdivide all contained curves. Use angleBound value if given.
B2DPolygon adaptiveSubdivideByAngle(const B2DPolygon& rCandidate, double fAngleBound = 0.0);
// #i37443# Subdivide all contained curves.
B2DPolygon adaptiveSubdivideByCount(const B2DPolygon& rCandidate, sal_uInt32 nCount = 0L);
// Definitions for the cut flags used from the findCut methods
typedef sal_uInt16 CutFlagValue;
#define CUTFLAG_NONE (0x0000)
#define CUTFLAG_LINE (0x0001)
#define CUTFLAG_START1 (0x0002)
#define CUTFLAG_START2 (0x0004)
#define CUTFLAG_END1 (0x0008)
#define CUTFLAG_END2 (0x0010)
#define CUTFLAG_ALL (CUTFLAG_LINE|CUTFLAG_START1|CUTFLAG_START2|CUTFLAG_END1|CUTFLAG_END2)
#define CUTFLAG_DEFAULT (CUTFLAG_LINE|CUTFLAG_START2|CUTFLAG_END2)
// Calculate cut between the points given by the two indices. pCut1
// and pCut2 will contain the cut coordinate on each edge in ]0.0, 1.0]
// (if given) and the return value will contain a cut description.
CutFlagValue findCut(
const B2DPolygon& rCandidate,
sal_uInt32 nIndex1, sal_uInt32 nIndex2,
CutFlagValue aCutFlags = CUTFLAG_DEFAULT,
double* pCut1 = 0L, double* pCut2 = 0L);
// This version is working with two indexed edges from different
// polygons.
CutFlagValue findCut(
const B2DPolygon& rCandidate1, sal_uInt32 nIndex1,
const B2DPolygon& rCandidate2, sal_uInt32 nIndex2,
CutFlagValue aCutFlags = CUTFLAG_DEFAULT,
double* pCut1 = 0L, double* pCut2 = 0L);
// This version works with two points and vectors to define the
// edges for the cut test.
CutFlagValue findCut(
const B2DPoint& rEdge1Start, const B2DVector& rEdge1Delta,
const B2DPoint& rEdge2Start, const B2DVector& rEdge2Delta,
CutFlagValue aCutFlags = CUTFLAG_DEFAULT,
double* pCut1 = 0L, double* pCut2 = 0L);
// test if point is on the given edge in range ]0.0..1.0[ without
// the start/end points. If so, return true and put the parameter
// value in pCut (if provided)
bool isPointOnEdge(
const B2DPoint& rPoint,
const B2DPoint& rEdgeStart,
const B2DVector& rEdgeDelta,
double* pCut = 0L);
/** Apply given LineDashing to given polygon
This method is used to cut down line polygons to the needed
pieces when a dashing needs to be applied.
It is now capable of keeping contained bezier segments.
It is also capable of delivering line and non-line portions
depending on what target polygons You provide. This is useful
e.g. for dashed lines with two colors.
If the last and the first snippet in one of the results have
a common start/end ppoint, they will be merged to achieve as
view as needed result line snippets. This is also relevant for
further processing the results.
@param rCandidate
The polygon based on which the snippets will be created.
@param rDotDashArray
The line pattern given as array of length values
@param pLineTarget
The target for line snippets, e.g. the first entry will be
a line segment with length rDotDashArray[0]. The given
polygon will be emptied as preparation.
@param pGapTarget
The target for gap snippets, e.g. the first entry will be
a line segment with length rDotDashArray[1]. The given
polygon will be emptied as preparation.
@param fFullDashDotLen
The sumed-up length of the rDotDashArray. If zero, it will
be calculated internally.
*/
void applyLineDashing(
const B2DPolygon& rCandidate,
const ::std::vector<double>& rDotDashArray,
B2DPolyPolygon* pLineTarget,
B2DPolyPolygon* pGapTarget = 0,
double fFullDashDotLen = 0.0);
// test if point is inside epsilon-range around an edge defined
// by the two given points. Can be used for HitTesting. The epsilon-range
// is defined to be the rectangle centered to the given edge, using height
// 2 x fDistance, and the circle around both points with radius fDistance.
bool isInEpsilonRange(const B2DPoint& rEdgeStart, const B2DPoint& rEdgeEnd, const B2DPoint& rTestPosition, double fDistance);
// test if point is inside epsilon-range around the given Polygon. Can be used
// for HitTesting. The epsilon-range is defined to be the rectangle centered
// to the given edge, using height 2 x fDistance, and the circle around both points
// with radius fDistance.
bool isInEpsilonRange(const B2DPolygon& rCandidate, const B2DPoint& rTestPosition, double fDistance);
/** Create a polygon from a rectangle.
@param rRect
The rectangle which describes the polygon size
@param fRadius
Radius of the edge rounding, relative to the rectangle size. 0.0 means no
rounding, 1.0 will lead to an ellipse
*/
B2DPolygon createPolygonFromRect( const B2DRectangle& rRect, double fRadius );
/** Create a polygon from a rectangle.
@param rRect
The rectangle which describes the polygon size
@param fRadiusX
@param fRadiusY
Radius of the edge rounding, relative to the rectangle size. 0.0 means no
rounding, 1.0 will lead to an ellipse
*/
B2DPolygon createPolygonFromRect( const B2DRectangle& rRect, double fRadiusX, double fRadiusY );
/** Create a polygon from a rectangle.
*/
B2DPolygon createPolygonFromRect( const B2DRectangle& rRect );
/** Create the unit polygon
*/
B2DPolygon createUnitPolygon();
/** Create a circle polygon with given radius.
This method creates a circle approximation consisting of
four cubic bezier segments, which approximate the given
circle with an error of less than 0.5 percent.
@param rCenter
Center point of the circle
@param fRadius
Radius of the circle
*/
B2DPolygon createPolygonFromCircle( const B2DPoint& rCenter, double fRadius );
/// create half circle centered on (0,0) from [0 .. F_PI]
B2DPolygon createHalfUnitCircle();
/** create a polygon which describes the unit circle and close it
@param nStartQuadrant
To be able to rebuild the old behaviour where the circles started at bottom,
this parameter is used. Default is 0 which is the first quadrant and the
polygon's start point will be the rightmost one. When using e.g. 1, the
first created quadrant will start at the YMax-position (with Y down on screens,
this is the lowest one). This is needed since when lines are dashed, toe old
geometry started at bottom point, else it would look different.
*/
B2DPolygon createPolygonFromUnitCircle(sal_uInt32 nStartQuadrant = 0);
/** Create an ellipse polygon with given radii.
This method creates an ellipse approximation consisting of
four cubic bezier segments, which approximate the given
ellipse with an error of less than 0.5 percent.
@param rCenter
Center point of the circle
@param fRadiusX
Radius of the ellipse in X direction
@param fRadiusY
Radius of the ellipse in Y direction
*/
B2DPolygon createPolygonFromEllipse( const B2DPoint& rCenter, double fRadiusX, double fRadiusY );
/** Create an unit ellipse polygon with the given angles, from start to end
*/
B2DPolygon createPolygonFromEllipseSegment( const B2DPoint& rCenter, double fRadiusX, double fRadiusY, double fStart, double fEnd );
B2DPolygon createPolygonFromUnitEllipseSegment( double fStart, double fEnd );
/** Predicate whether a given polygon is a rectangle.
@param rPoly
Polygon to check
@return true, if the polygon describes a rectangle
(polygon is closed, and the points are either cw or ccw
enumerations of a rectangle's vertices). Note that
intermediate points and duplicate points are ignored.
*/
bool isRectangle( const B2DPolygon& rPoly );
// create 3d polygon from given 2d polygon. The given fZCoordinate is used to expand the
// third coordinate.
B3DPolygon createB3DPolygonFromB2DPolygon(const B2DPolygon& rCandidate, double fZCoordinate = 0.0);
// create 2d PolyPolygon from given 3d PolyPolygon. All coordinates are transformed using the given
// matrix and the resulting x,y is used to form the new polygon.
B2DPolygon createB2DPolygonFromB3DPolygon(const B3DPolygon& rCandidate, const B3DHomMatrix& rMat);
// create simplified version of the original polygon by
// replacing segments with spikes/loops and self intersections
// by several trivial sub-segments
B2DPolygon createSimplifiedPolygon(const B2DPolygon&);
// calculate the distance to the given endless ray and return. The relative position on the edge is returned in Cut.
// That position may be less than 0.0 or more than 1.0
double getDistancePointToEndlessRay(const B2DPoint& rPointA, const B2DPoint& rPointB, const B2DPoint& rTestPoint, double& rCut);
// calculate the smallest distance to given edge and return. The relative position on the edge is returned in Cut.
// That position is in the range [0.0 .. 1.0] and the returned distance is adapted accordingly to the start or end
// point of the edge
double getSmallestDistancePointToEdge(const B2DPoint& rPointA, const B2DPoint& rPointB, const B2DPoint& rTestPoint, double& rCut);
// for each contained edge calculate the smallest distance. Return the index to the smallest
// edge in rEdgeIndex. The relative position on the edge is returned in rCut.
// If nothing was found (e.g. empty input plygon), DBL_MAX is returned.
double getSmallestDistancePointToPolygon(const B2DPolygon& rCandidate, const B2DPoint& rTestPoint, sal_uInt32& rEdgeIndex, double& rCut);
// distort single point. rOriginal describes the original range, where the given points describe the distorted corresponding points.
B2DPoint distort(const B2DPoint& rCandidate, const B2DRange& rOriginal, const B2DPoint& rTopLeft, const B2DPoint& rTopRight, const B2DPoint& rBottomLeft, const B2DPoint& rBottomRight);
// distort polygon. rOriginal describes the original range, where the given points describe the distorted corresponding points.
B2DPolygon distort(const B2DPolygon& rCandidate, const B2DRange& rOriginal, const B2DPoint& rTopLeft, const B2DPoint& rTopRight, const B2DPoint& rBottomLeft, const B2DPoint& rBottomRight);
// rotate polygon around given point with given angle.
B2DPolygon rotateAroundPoint(const B2DPolygon& rCandidate, const B2DPoint& rCenter, double fAngle);
// expand all segments (which are not yet) to curve segments. This is done with setting the control
// vectors on the 1/3 resp. 2/3 distances on each segment.
B2DPolygon expandToCurve(const B2DPolygon& rCandidate);
// expand given segment to curve segment. This is done with setting the control
// vectors on the 1/3 resp. 2/3 distances. The return value describes if a change took place.
bool expandToCurveInPoint(B2DPolygon& rCandidate, sal_uInt32 nIndex);
// set continuity for the whole curve. If not a curve, nothing will change. Non-curve points are not changed, too.
B2DPolygon setContinuity(const B2DPolygon& rCandidate, B2VectorContinuity eContinuity);
// set continuity for given index. If not a curve, nothing will change. Non-curve points are not changed, too.
// The return value describes if a change took place.
bool setContinuityInPoint(B2DPolygon& rCandidate, sal_uInt32 nIndex, B2VectorContinuity eContinuity);
// test if polygon contains neutral points. A neutral point is one whos orientation is neutral
// e.g. positioned on the edge of it's predecessor and successor
bool hasNeutralPoints(const B2DPolygon& rCandidate);
// remove neutral points. A neutral point is one whos orientation is neutral
// e.g. positioned on the edge of it's predecessor and successor
B2DPolygon removeNeutralPoints(const B2DPolygon& rCandidate);
// tests if polygon is convex
bool isConvex(const B2DPolygon& rCandidate);
// calculates the orientation at edge nIndex
B2VectorOrientation getOrientationForIndex(const B2DPolygon& rCandidate, sal_uInt32 nIndex);
// calculates if given point is on given line, taking care of the numerical epsilon
bool isPointOnLine(const B2DPoint& rStart, const B2DPoint& rEnd, const B2DPoint& rCandidate, bool bWithPoints = false);
// calculates if given point is on given polygon, taking care of the numerical epsilon. Uses
// isPointOnLine internally
bool isPointOnPolygon(const B2DPolygon& rCandidate, const B2DPoint& rPoint, bool bWithPoints = true);
// test if candidate is inside triangle
bool isPointInTriangle(const B2DPoint& rA, const B2DPoint& rB, const B2DPoint& rC, const B2DPoint& rCandidate, bool bWithBorder = false);
// test if candidateA and candidateB are on the same side of the given line
bool arePointsOnSameSideOfLine(const B2DPoint& rStart, const B2DPoint& rEnd, const B2DPoint& rCandidateA, const B2DPoint& rCandidateB, bool bWithLine = false);
// add triangles for given rCandidate to rTarget. For each triangle, 3 points will be added to rCandidate.
// All triangles will go from the start point of rCandidate to two consecutive points, building (rCandidate.count() - 2)
// triangles.
void addTriangleFan(const B2DPolygon& rCandidate, B2DPolygon& rTarget);
// grow for polygon. Move all geometry in each point in the direction of the normal in that point
// with the given amount. Value may be negative.
B2DPolygon growInNormalDirection(const B2DPolygon& rCandidate, double fValue);
// force all sub-polygons to a point count of nSegments
B2DPolygon reSegmentPolygon(const B2DPolygon& rCandidate, sal_uInt32 nSegments);
// create polygon state at t from 0.0 to 1.0 between the two polygons. Both polygons must have the same
// organisation, e.g. same amount of points
B2DPolygon interpolate(const B2DPolygon& rOld1, const B2DPolygon& rOld2, double t);
bool isPolyPolygonEqualRectangle( const B2DPolyPolygon& rPolyPoly, const B2DRange& rRect );
// #i76891# Try to remove existing curve segments if they are simply edges
B2DPolygon simplifyCurveSegments(const B2DPolygon& rCandidate);
// makes the given indexed point the new polygon start point. To do that, the points in the
// polygon will be rotated. This is only valid for closed polygons, for non-closed ones
// an assertion will be triggered
B2DPolygon makeStartPoint(const B2DPolygon& rCandidate, sal_uInt32 nIndexOfNewStatPoint);
/** create edges of given length along given B2DPolygon
@param rCandidate
The polygon to move along. Points at the given polygon are created, starting
at position fStart and stopping at less or equal to fEnd. The closed state is
preserved.
The polygon is subdivided if curve segments are included. That subdivision is the base
for the newly created points.
If the source is closed, the indirectly existing last edge may NOT have the
given length.
If the source is open, all edges will have the given length. You may use the last
point of the original when You want to add the last edge Yourself.
@param fLength
The length of the created edges. If less or equal zero, an empty polygon is returned.
@param fStart
The start distance for the first to be generated point. Use 0.0 to get the
original start point. Negative values are truncated to 0.0.
@param fEnd
The maximum distance for the last point. No more points behind this distance will be created.
Use 0.0 to proccess the whole polygon. Negative values are truncated to 0.0. It also
needs to be more or equal to fStart, else it is truncated to fStart.
@return
The newly created polygon
*/
B2DPolygon createEdgesOfGivenLength(const B2DPolygon& rCandidate, double fLength, double fStart = 0.0, double fEnd = 0.0);
/** Create Waveline along given polygon
The implementation is based on createEdgesOfGivenLength and creates a curve
segment with the given dimensions for each created line segment. The polygon
is treated as if opened (closed state will be ignored) and only for whole
edges a curve segment will be created (no rest handling)
@param rCandidate
The polygon along which the waveline will be created
@param fWaveWidth
The length of a single waveline curve segment
@param fgWaveHeight
The height of the waveline (amplitude)
*/
B2DPolygon createWaveline(const B2DPolygon& rCandidate, double fWaveWidth, double fWaveHeight);
/** split each edge of a polygon in exactly nSubEdges equidistant edges
@param rCandidate
The source polygon. If too small (no edges), nSubEdges too small (<2)
or neither bHandleCurvedEdgesnor bHandleStraightEdges it will just be returned.
Else for each edge nSubEdges will be created. Closed state is preserved.
@param nSubEdges
How many edges shall be created as replacement for each single edge
@param bHandleCurvedEdges
Process curved edges or not. If to handle the curved edges will be splitted
into nSubEdges part curved edges of equidistant bezier distances. If not,
curved edges will just be copied.
@param bHandleStraightEdges
Process straight edges or not. If to handle the straight edges will be splitted
into nSubEdges part curved edges of equidistant length. If not,
straight edges will just be copied.
*/
B2DPolygon reSegmentPolygonEdges(const B2DPolygon& rCandidate, sal_uInt32 nSubEdges, bool bHandleCurvedEdges, bool bHandleStraightEdges);
//////////////////////////////////////////////////////////////////////
// comparators with tolerance for 2D Polygons
bool equal(const B2DPolygon& rCandidateA, const B2DPolygon& rCandidateB, const double& rfSmallValue);
bool equal(const B2DPolygon& rCandidateA, const B2DPolygon& rCandidateB);
/** snap some polygon coordinates to discrete coordinates
This method allows to snap some polygon points to discrete (integer) values
which equals e.g. a snap to discrete coordinates. It will snap points of
horizontal and vertical edges
@param rCandidate
The source polygon
@return
The modified version of the source polygon
*/
B2DPolygon snapPointsOfHorizontalOrVerticalEdges(const B2DPolygon& rCandidate);
/** returns true if the Polygon only contains horizontal or vertical edges
so that it could be represented by RegionBands
*/
bool containsOnlyHorizontalAndVerticalEdges(const B2DPolygon& rCandidate);
/// get the tangent with which the given point is entered seen from the previous
/// polygon path data. Take into account all stuff like closed state, zero-length edges and others.
B2DVector getTangentEnteringPoint(const B2DPolygon& rCandidate, sal_uInt32 nIndex);
/// get the tangent with which the given point is left seen from the following
/// polygon path data. Take into account all stuff like closed state, zero-length edges and others.
B2DVector getTangentLeavingPoint(const B2DPolygon& rCandidate, sal_uInt32 nIndex);
/// converters for com::sun::star::drawing::PointSequence
B2DPolygon UnoPointSequenceToB2DPolygon(
const com::sun::star::drawing::PointSequence& rPointSequenceSource,
bool bCheckClosed = true);
void B2DPolygonToUnoPointSequence(
const B2DPolygon& rPolygon,
com::sun::star::drawing::PointSequence& rPointSequenceRetval);
/* converters for com::sun::star::drawing::PointSequence and
com::sun::star::drawing::FlagSequence to B2DPolygon (curved polygons)
*/
B2DPolygon UnoPolygonBezierCoordsToB2DPolygon(
const com::sun::star::drawing::PointSequence& rPointSequenceSource,
const com::sun::star::drawing::FlagSequence& rFlagSequenceSource,
bool bCheckClosed = true);
void B2DPolygonToUnoPolygonBezierCoords(
const B2DPolygon& rPolyPolygon,
com::sun::star::drawing::PointSequence& rPointSequenceRetval,
com::sun::star::drawing::FlagSequence& rFlagSequenceRetval);
/** Read poly-polygon from SVG.
This function imports a poly-polygon from an SVG points
attribute (a plain list of coordinate pairs).
@param o_rPoly
The output polygon. Note that svg:points can only define a
single polygon
@param rSvgPointsAttribute
A valid SVG points attribute string
@return true, if the string was successfully parsed
*/
bool importFromSvgPoints( B2DPolygon& o_rPoly,
const ::rtl::OUString& rSvgPointsAttribute );
/** Write poly-polygon to SVG.
This function imports a non-bezier polygon to SVG points
(a plain list of coordinate pairs).
@param rPoly
The polygon to export
@param rSvgPointsAttribute
A valid SVG points attribute string
@return true, if the string was successfully parsed
*/
::rtl::OUString exportToSvgPoints( const B2DPolygon& rPoly );
} // end of namespace tools
} // end of namespace basegfx
#endif /* _BGFX_POLYGON_B2DPOLYGONTOOLS_HXX */