blob: 2ede7aece0903912d0348d1903be78e25b4c17e9 [file] [log] [blame]
/**************************************************************
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*************************************************************/
#ifndef _BGFX_NUMERIC_FTOOLS_HXX
#define _BGFX_NUMERIC_FTOOLS_HXX
#include <rtl/math.hxx>
//////////////////////////////////////////////////////////////////////////////
// standard PI defines from solar.h, but we do not want to link against tools
#ifndef F_PI
#define F_PI M_PI
#endif
#ifndef F_PI2
#define F_PI2 M_PI_2
#endif
#ifndef F_PI4
#define F_PI4 M_PI_4
#endif
#ifndef F_PI180
#define F_PI180 (M_PI/180.0)
#endif
#ifndef F_PI1800
#define F_PI1800 (M_PI/1800.0)
#endif
#ifndef F_PI18000
#define F_PI18000 (M_PI/18000.0)
#endif
#ifndef F_2PI
#define F_2PI (2.0*M_PI)
#endif
//////////////////////////////////////////////////////////////////////////////
// fTools defines
namespace basegfx
{
/** Round double to nearest integer
@return the nearest integer
*/
inline sal_Int32 fround( double fVal )
{
return fVal > 0.0 ? static_cast<sal_Int32>( fVal + .5 ) : -static_cast<sal_Int32>( -fVal + .5 );
}
/** Round double to nearest integer
@return the nearest 64 bit integer
*/
inline sal_Int64 fround64( double fVal )
{
return fVal > 0.0 ? static_cast<sal_Int64>( fVal + .5 ) : -static_cast<sal_Int64>( -fVal + .5 );
}
/** Prune a small epsilon range around zero.
Use this method e.g. for calculating scale values. There, it
is usually advisable not to set a scaling to 0.0, because that
yields singular transformation matrices.
@param fVal
An arbitrary, but finite and valid number
@return either fVal, or a small value slightly above (when
fVal>0) or below (when fVal<0) zero.
*/
inline double pruneScaleValue( double fVal )
{
// old version used ::std::min/max, but this collides if min is defined as preprocessor
// macro which is the case e.g with windows.h headers. The simplest way to avoid this is to
// just use the full comparison. I keep the original here, maybe there will be a better
// solution some day.
//
//return fVal < 0.0 ?
// (::std::min(fVal,-0.00001)) :
// (::std::max(fVal,0.00001));
if(fVal < 0.0)
return (fVal < -0.00001 ? fVal : -0.00001);
else
return (fVal > 0.00001 ? fVal : 0.00001);
}
/** clamp given value against given minimum and maximum values
*/
template <class T> inline const T& clamp(const T& value, const T& minimum, const T& maximum)
{
if(value < minimum)
{
return minimum;
}
else if(value > maximum)
{
return maximum;
}
else
{
return value;
}
}
/** Convert value from degrees to radians
*/
inline double deg2rad( double v )
{
// divide first, to get exact values for v being a multiple of
// 90 degrees
return v / 90.0 * M_PI_2;
}
/** Convert value radians to degrees
*/
inline double rad2deg( double v )
{
// divide first, to get exact values for v being a multiple of
// pi/2
return v / M_PI_2 * 90.0;
}
/** Snap v to nearest multiple of fStep, from negative and
positive side.
Examples:
snapToNearestMultiple(-0.1, 0.5) = 0.0
snapToNearestMultiple(0.1, 0.5) = 0.0
snapToNearestMultiple(0.25, 0.5) = 0.0
snapToNearestMultiple(0.26, 0.5) = 0.5
*/
double snapToNearestMultiple(double v, const double fStep);
/** Snap v to the range [0.0 .. fWidth] using modulo
*/
double snapToZeroRange(double v, double fWidth);
/** Snap v to the range [fLow .. fHigh] using modulo
*/
double snapToRange(double v, double fLow, double fHigh);
/** return fValue with the sign of fSignCarrier, thus evtl. changed
*/
inline double copySign(double fValue, double fSignCarrier)
{
#ifdef WNT
return _copysign(fValue, fSignCarrier);
#else
return copysign(fValue, fSignCarrier);
#endif
}
class fTools
{
/// Threshold value for equalZero()
static double mfSmallValue;
public:
/// Get threshold value for equalZero and friends
static double getSmallValue() { return mfSmallValue; }
/// Set threshold value for equalZero and friends
static void setSmallValue(const double& rfNew) { mfSmallValue = rfNew; }
/// Compare against small value
static bool equalZero(const double& rfVal)
{
return (fabs(rfVal) <= getSmallValue());
}
/// Compare against given small value
static bool equalZero(const double& rfVal, const double& rfSmallValue)
{
return (fabs(rfVal) <= rfSmallValue);
}
static bool equal(const double& rfValA, const double& rfValB)
{
// changed to approxEqual usage for better numerical correctness
return rtl::math::approxEqual(rfValA, rfValB);
}
static bool equal(const double& rfValA, const double& rfValB, const double& rfSmallValue)
{
return (fabs(rfValA - rfValB) <= rfSmallValue);
}
static bool less(const double& rfValA, const double& rfValB)
{
return (rfValA < rfValB && !equal(rfValA, rfValB));
}
static bool lessOrEqual(const double& rfValA, const double& rfValB)
{
return (rfValA < rfValB || equal(rfValA, rfValB));
}
static bool more(const double& rfValA, const double& rfValB)
{
return (rfValA > rfValB && !equal(rfValA, rfValB));
}
static bool moreOrEqual(const double& rfValA, const double& rfValB)
{
return (rfValA > rfValB || equal(rfValA, rfValB));
}
};
} // end of namespace basegfx
#endif /* _BGFX_NUMERIC_FTOOLS_HXX */